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Multibaker map for thermodynamic cross effects in dynamical systems
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A consistent description of simultaneous heat and particle transport, including cross effects, and the asso-
ciated entropy balance is given in the framework of a deterministic dynamical system. This is achieved by a
multibaker map where, in addition to the phase-space density of the multibaker, a second field with appropriate
source terms is included in order to mimic a spatial temperature distribution and its time evolution. Conditions
are given to ensure consistency in an appropriately defined continuum limit with the thermodynamic entropy
balance. They leave as the only free parameter of the model the entropy flux let directly into the surroundings.
If it vanishes in the bulk, the transport properties of the model are described by the thermodynamic transport
equations. Another choice leads to a uniform temperature distribution. It represents transport problems treated
by means of a thermostating algorithm, similar to the one considered in nonequilibrium molecular dynamics.

PACS number~s!: 05.45.Ac, 05.70.Ln, 05.20.2y, 51.20.1d
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I. INTRODUCTION

Irreversibility in transport models based on dynamic
systems with only afew degrees of freedomhas become the
subject of intensive recent studies@1–11#. They illustrate
how macroscopic transport coefficients are related to
properties of the microscopic dynamics. It is a remarka
discovery that in chaotic dynamical systems a rate of ir
versible entropy production can be defined@4,6,7,9,12–20#.
This development opens the possibility of requiring for
consistent dynamical-system modeling of an irreversible p
cess the derivation of both the transport equations and
entropy balance. In our approach we shall observe this c
straint.

Many models@4–10# were originally designed to rely on
equations of motion, where transport is induced by an ex
nal field and the~average! work done by the field on the
systems is removed by a so-called Gaussian thermostat.
approach is commonly implemented with periodic bound
conditions. In spite of extensive numerical investigatio
however, there are conceptual problems in the interpreta
of the results as far as the entropy~heat! flux is concerned.
After all, it is not obvious how this flux can come about in
system with periodic boundaries. Moreover, the aver
phase-space contraction is commonly taken as a measu
entropy production. This limits these considerations to
overall entropy balance of the full system. It is not possi
to address the local balance of nonequilibrium thermo
namics. The aim of the present article is to investigate a c
of dynamical systems tailored to describe simultaneous
ticle and heat transport, driven by appropriate boundary c
ditions and an external field. We work out thelocal entropy
balance, and identify conditions under which the model c
be consistent with nonequilibrium thermodynamics.

Earlier low-dimensional models were devoted exclusiv
to either particle~mass, charge! transport@5,6,21–26# or to
heat conductivity @27,28#. These transport processes a
driven by a single thermodynamic force. It is of basic inte
PRE 621063-651X/2000/62~1!/349~17!/$15.00
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est, however, to understand how thermodynamic cross
fects generated by the presence of twoindependentdriving
forces can be described in the framework of dynamic
system theory~as for many-particle systems see, e.g.,@29#!.
The case of thermoelectric phenomena in which the driv
forces are~i! the temperature difference and~ii ! the electric
field and/or a density gradient is illustrated by Fig. 1. T
cross effects imply that the temperature gradient contribu
to the electric current, and the density gradient to the h
current. Recently, the authors of the present paper sugge
an elementary model to study these effects@30#. Here, we
generalize it to explore the conditions under which cons
tency with thermodynamics can be found.

A part of the above mentioned problems with the entro
balance has recently been clarified@16–18# in the framework
of multibaker maps modeling quasi-one-dimensional part
transport at constant temperature. These models are give
terms of the time evolution of the~multibaker! phase-space
density in a corresponding two-dimensionalsingle-particle
phase space, which in this case consists of a band of leng
L. The fixed width represents a phase-space variablep in
addition to the spatial coordinatex along the band. The
multibaker map defines a discrete dynamics~cf. below!,
which is one-to-one on the band, but does not necessa
preserve the volume locally. A recent paper by Tasaki a

FIG. 1. Graphic illustration of the transport process consider
A system of spatial extensionL is attached to reservoirs inducin
particle and heat currents due to the differences in the densitie~n!
and temperatures~T! at the two ends, as indicated by the arrow
Along the system heat can be exchanged with a thermostat.
349 ©2000 The American Physical Society
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350 PRE 62MÁTYÁS, TÉL, AND VOLLMER
Gaspard@31# shows that analogous results can be obtai
with area-preserving maps by making the width of the ba
position dependent. This varying height was connected
changes in the~potential! energy, and does not appear as
driving force independent of the density gradient or the
ternal field.

Multibaker maps have no natural momentum varia
conjugated to the spatial coordinatex. Therefore, we charac
terize the thermodynamic states bytwo independentfields.
Besides the phase-space density%, a new fieldw is intro-
duced, whose dynamics describes the evolution of thekinetic
energy per particle, i.e., %w corresponds to the kinetic
energy density@32#.

To make contact with nonequilibrium thermodynamic
the time evolution of average densities in regions of sm
spatial extension along thex axis is considered. They will be
called coarse-grained densities. Transport equations in th
form of differential equations are obtained in a continuu
limit, where the spatial resolution of coarse graining is mu
smaller than the linear sizeL of the system and the time un
t of the discrete dynamics is much shorter than that of
macroscopic relaxations. In thismacroscopic limitthe phase-
space density% and the kinetic energy per particlew are
related to the particle densityn and to the local temperatur
T, respectively.

It is not obvious that a deterministic dynamical system
simple as a multibaker can fulfill all constraints required
consistency with thermodynamics@33#—not even when tak-
ing the macroscopic limit. The thermodynamic entropy b
ance relates the time derivative of the entropy densitys to the
entropy productions (irr) per unit volume and to the entrop
flux F,

] ts5s (irr)1F. ~1!

We consider thermoelectric phenomena induced by parti
of chargee in a transport process along thex axis. In a
system that is translation invariant perpendicular to thx
axis, the quantities causing entropy changes can be expre
as @34#

s (irr)5
e2 j 2

selT
1lS ]xT

T D 2

, ~2a!

F52]xj (s). ~2b!

Heresel andl denote the electric and the heat conductivi
respectively, and

j 5nvel2
sel

e2
~]xmc1ea]xT!, ~3a!

j (s)5
eP

T
j 2l

]xT

T
~3b!

are the particle and the entropy current densities, res
tively. In Eq. ~3!, mc denotes the chemical potential of th
particles, andvel is the drift velocity due to an external elec
tric field E, which is related tosel by
d
d
to

-

e

,
ll

h

e

s
r

-

es

sed

,

c-

vel5
selE

en
. ~4!

P is the Peltier coefficient, anda the thermoelectric powe
~or Seebeck coefficient!. Thermodynamic cross effects ar
manifest in Eq.~3!, and the corresponding Onsager relatio
imply a relation between the transport coefficientsa andP.

Since the entropy plays a central role in these relatio
one has to choose an appropriate entropy concept for
multibaker. One obvious candidate is the Gibbs entropyS(G)

defined with respect to the phase-space density%. Because
of the ever refining phase-space structures that chaotic
namics generates from every smooth initial density, this
tropy neverbecomes time independent, not even in a mac
scopically steady state. In contrast, the correspond
entropyS, whose definition is based on coarse-grained d
sities, is thermodynamically well behaved, and its value
unit length is the analog of the entropy densitys appearing in
Eq. ~1!. This entropy will be called thecoarse-grained en-
tropy. The irreversible entropy production of arbitrary stea
and nonsteady states has been identified as the time de
tive of the difference between the Gibbs and the coar
grained entropy@17,18#.

Although the thermodynamic relation~2b! requires the
entropy flux to be the divergence of the entropy current,
allow for deviations from thermodynamics in that we do n
exclude the presence of an additional term. This term is
terpreted as the consequence of a thermostat, which calo-
cally remove or release heat, leading to an additional entr
flux F (thermostat). In such cases

F52]xj (s)1F (thermostat). ~5!

We say a system is thermostated wheneverF (thermostat)dif-
fers from zero. Depending on the details of the model, we
able to study both nonthermostated and thermostated
tems, and in the latter case we shall be able to gene
arbitrary stationary temperature profiles. To our knowled
these features have not yet been explored in nonequilibr
molecular dynamics simulations@4,29#.

The paper is organized as follows. In Sec. II we revisit t
thermodynamics of irreversible processes by rewriting
expressions of entropy production as well as of particle a
entropy currents in forms amenable to a comparison with
results of multibaker maps. Subsequently~Sec. III!, we in-
troduce the multibaker map, and discuss the time evolu
of the phase-space density and the kinetic-energy den
The Gibbs and coarse-grained entropies and their dynam
are studied in Sec. IV. In Sec. V the macroscopic limit of t
obtained expressions is taken. Conditions on the baker
namics to make it consistent with thermodynamics are
plored in Sec. VI. A short discussion is devoted to therm
stated cases~Sec. VII!, and our main results are summarize
in Sec. VIII. The paper is augmented by two Appendixe
Appendix A is devoted to a formal definition of the map a
the resulting time evolution of the densities. In Appendix B
is shown that the macroscopic results do not depend on
prescription for coarse graining.
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II. NONEQUILIBRIUM THERMODYNAMICS

In this section we recall the thermodynamic description
thermoelectric transport induced by two independent driv
fields @33#. The most general situation is treated, which co
prises the presence of an external field, as well as gradi
in the particle density and the temperature.

A. Thermodynamic forces and currents

We consider a system of particles of chargee, which in-
teract with a lattice forming a background which ensures
electric neutrality of the system. The frame of reference
fixed to this background. The degrees of freedom of the
tice are not considered. As demonstrated explicitly for
periodic Lorentz gas, this setting leads to a chaotic, dif
sionlike motion of the particles. Due to an~electro!chemical
potential gradient and a temperature gradient, both a par
and an energy current are flowing through the system. Lj
and j (u), respectively, denote the density of these current
a frame of reference fixed to the lattice. In this setting
number density of particlesn and the densityu of the total
energy are locally preserved.~The densityu also contains the
potential energy due to an external field and the kinetic
ergy of the ordered motion.!

In order to derive the entropy balance in a region of fix
volume, we start from the conservation laws

] tn52¹ j , ~6a!

] tu52¹ j (u), ~6b!

and express the time derivative of the entropy density
unit volumes,

] ts52¹ j (s)1s (irr) , ~6c!

in terms of the entropy current densityj (s) and the irrevers-
ible entropy productions (irr) .

Considering a system in local equilibrium, the Gibbs
lation

T ds5du2m dn, ~7!

holds, withT andm denoting the local temperature and ele
trochemical potential, respectively. To find the time deriv
tive of s, we write the local temporal change of Eq.~7!,

] ts5
1

T
] tu2

m

T
] tn, ~8!

in the form of Eq.~6c! by identifying

j (s)5
j (u)2m j

T
~9a!

as the total entropy current, and

s (irr)5 j (u)¹
1

T
2 j ¹

m

T
52~ j (s)¹T1 j ¹m!

1

T
~9b!

as the irreversible entropy production.
Equation~9b! shows that the currentsj and j (s) are con-

jugate to the thermodynamic forces2¹m/T and 2¹T/T,
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respectively. Therefore, in the spirit of nonequilibrium the
modynamics, these currents can be expressed in terms o
forces as

j 52L11

¹m

T
2L12

¹T

T
, ~10a!

j (s)52L21

¹m

T
2L22

¹T

T
~10b!

52
L11L222L12L21

L11

¹T

T
1

L21

L11
j , ~10c!

where the latter expression forj (s) was obtained by inserting
Eq. ~10a! into Eq. ~10b!. Moreover, by inserting Eq.~10b!
into Eq. ~9b!, one expresses the irreversible entropy prod
tion as

s (irr)5
L11L222L12L21

L11
S ¹T

T D 2

1
j 2

L11
1

L122L21

L11

¹T

T
j .

~11!

After using the Onsager relationL125L21, this expression
for the irreversible entropy production is a quadratic for
which takes only non-negative values provided that the m
trix of kinetic coefficients is positive definite, i.e., the wel
known conditionL11L222L12L21.0 is fulfilled @33,35#.

B. Identifying transport coefficients

It is worth expressing the kinetic coefficientsLi j by
means of directly measurable quantities. The total elec
chemical potential can be split asm5mc1ef, wheremc is
the chemical part, andf is the electric potential. SinceE5
2¹f and j el5e j is the electric current, we find thatL11 is
proportional to the electric conductivitysel.0:

L115
selT

e2
. ~12a!

In the absence of a particle current~i.e., for j 50), T j (s)

provides the heat current, such that in view of Eq.~10c!

L11L222L12L21

L11
5l, ~12b!

wherel.0 is the heat conductivity. At zero particle curre
and constant chemical potential, a temperature gradien
duces an electric field, which is conventionally written
a¹T, where a is called the thermoelectric power~or the
Seebeck coefficient!. Consequently, from Eq.~10a! one finds

L125
asel

Te
. ~12c!

Finally, in a system without temperature gradients, the
tropy current due to the presence of an electric currente j
amounts toPe j/T, whereP is the Peltier coefficient. Hence
Eq. ~10c! implies

L215
Psel

e
. ~12d!
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Using the phenomenological coefficients~12! we write

j 52
sel

e2
~¹m1ea¹T!, ~13a!

j (s)52l
¹T

T
1

eP

T
j . ~13b!

Note that the Onsager relationL125L21 makes the Peltier
and Seebeck coefficients connected as

P5Ta. ~14!

Substituting Eqs.~12! into ~11! one thus derives Eq.~2a!.

C. Relating transport and diffusion coefficients

It is worth replacing the chemical potential in the expre
sions for the currents and entropy production by the den
n and temperatureT. We write

¹mc5
De2

sel
¹n2§¹T, ~15!

where the diffusion coefficient is defined as

D5
sel

e2 S ]mc

]n D U
T

, ~16a!

and

§[2S ]mc

]T D U
n

~16b!

is a quantity of dimension entropy per particle. By means
the drift velocity vel @Eq. ~4!# one can rewrite the particle
current density~13a! as

j 5veln2D¹n2k
nD

T
¹T ~17!

where

k
nD

T
[

sel

e2
~ea2§!. ~18!

The entropy current then takes the form

j (s)52S l1knD
eP

T D¹T

T
1

eP

T
~veln2D¹n!, ~19!

and in view of Eqs.~14!, ~16a!, and~18! one obtains

eP5knS ]mc

]n D U
T

2TS ]mc

]T D U
n

. ~20!

Note that in the entropy current~19! the coefficients in front
of the veln and2D¹n terms coincide.

We finally mention that by taking the limitE,e→0 at
constanteP,ea, andsel /e

2, the thermoelectric problem i
formally mapped onto the problem of thermal diffusion in
binary mixture. In that casen stands for the concentration o
-
ty

f

one of the diffusing materials, and the quantitykD is the
thermal diffusion coefficient@36#. Based on this analogy, w
considerkD in Eq. ~18! as the thermal diffusion coefficien
of charged particles in the thermoelectric problem.

III. THE MULTIBAKER MAP

Baker maps are known to be prototypes of strongly c
otic systems@37#. Multibaker maps are a generalizatio
where a spatially extended system is modeled by a chai
mutually interrelated baker maps, in order to model transp
@21,22,24,16–18,31# via the dynamics of the~multibaker!
phase-space density%. The single-particle phase space mo
eled by the multibaker map consists ofN identical cells of
width a and heightb, which are labeled by the indexm
@Fig. 2~a!#. After each time unitt every cell is divided into
three columns@Fig. 2~b!#. The right ~left! column of width
arm (alm) is mapped onto a strip of widtha and of height
brm11̃ (blm21̃) in the right ~left! neighboring cell. The
middle one preserves its areasm̃5sm . The map isglobally
phase-space preserving, i.e.,sm1r m1 l m5r m̃1 l m̃1sm̃51.
A formal definition is given in Appendix A. The map mimic
the time evolution of a many-particle system with weak
teractions in a single-particle phase space@38#. The equilib-
rium equations of state will turn out to be those of a classi
ideal gas.

The (x,p) dynamics of the multibaker map is consider
to be amicroscopicdynamics in the sense that it is determi
istic, chaotic, and mixing. It drives two fields which genera
ever refining phase-space structures.

As well as these fields, we also consider coarse-grai
densities obtained by averaging over the cells. The cell wi
a is considered to be the smallest length scale where a t
modynamic description applies. In the spirit of local therm
dynamic equilibrium, the local averages of the microsco
variables characterize the thermodynamic state in the c
The temporal evolution of the coarse-grained versions o%

FIG. 2. Graphical illustration of the action of the multibak
map on the phase space (x,p). ~a! The mapping is defined on a
domain of N[L/a identical rectangular cells of sizea3b, with
boundary conditions imposed in two additional cells 0 andN11.
~b! After every time unitt each cell is divided into three columns
which are squeezed and stretched to obtain horizontal strip
width a. The average values of the fields%(x,p) andw(x,p) on the
cells ~strips! @cf. Eqs. ~21! and ~25!# are given on the margins
Iteration of this rule defines the time evolution.
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PRE 62 353MULTIBAKER MAP FOR THERMODYNAMIC CROSS . . .
andw is consequently expected to describe an approach
ward a steady state, where the the coarse-grained field
longer change in time~in contrast to the fully resolved fields
which approach closer and closer toward fractal distri
tions!. To emphasize that coarse graining is taken over
cells, the coarse-grained density will also be called thecell
density.

The dynamics of earlier multibaker models is the same
all cells. There can be inhomogeneities in the densities,
the evolution equations are kept translation invariant. He
we relax this constraint by allowing the transfer rates of c
m to depend on the coarse-grained fields in cellm and its
neighbors. This dependence mimics the effect of the ther
dynamic driving force due, for instance, to a local tempe
ture gradient. It induces anm dependence of the paramete
Since all calculations can be performed without ever re
ring to the form of these dependencies, we will not y
specify them but start from a map with a general set
space- and time-dependent parameters. Their form will
fixed a posterioriby comparison with thermodynamics.

Due to the self-similarity of the multibaker dynamics, th
local transport and entropy balance can be worked out b
calculation considering one time step only. A discussion
more general prescriptions for the coarse graining is
egated to Appendix B.

A. Evolution of the phase-space density

Thermodynamic transport equations describe the t
evolution of the phase-space density% and the kinetic-
energy densityw. For explicit calculations of their time evo
lution we always start with the constant values%m andwm in
every cell m. This is convenient from a technical point o
view, and does not lead to a restriction of the domain
validity of the model, as demonstrated in Appendix B. Aft
one step of iteration the densities will be piecewise cons
on the stripsi 5R,S,L defined in Fig. 2~b!. Due to the con-
servation of the particle number, they are

%m,r8 5
r m21

r m̃
%m21 ,

%m,s8 5%m , ~21!

%m,l8 5
l m11

l m̃
%m11 .

The factorsr m21 /r m̃ and l m11 / l m̃ give rise to local contrac-
tion or expansion of phase-space volumes.

The coarse-grained density%m8 after one time step is the
average of the contributions~21! on the different strips:

%m8 5~12r m2 l m!%m1r m21%m211 l m11%m11 . ~22!

Multiplying the equation byt21 and introducing the curren

j m5
ab

t
~r m%m2 l m11%m11! ~23!

through the right boundary of cellm, Eq. ~22! appears in the
form of a continuity equation,
o-
no

-
e

r
ut
e,
ll

o-
-
.
r-
t
f
e

a
f
l-

e

f

nt

b~%m8 2%m!

t
52

j m2 j m21

a
. ~24!

It can be seen as the discrete counterpart of Eq.~6a!. Note
that by definition the current through the left boundary
cell m is the same as the current through the right bound
of cell m21. In this paper all types of currents associat
with cell m will also be defined as a flow through the rig
boundary.

B. Evolution of the kinetic-energy density

The (x,p) dynamics does not imply any constraint onw.
Its time evolution can be chosen according to physical in
ition. In contrast to the particle density, we consider the
netic energy per unit volume%mwm as a nonconserved quan
tity. In addition to a contribution from the particle flow, th
new valueswm,i8 on the stripsi 5R,S,L will therefore contain
terms characterized by a local source strengthqm , which
accounts for a local heating:

%m,r8 wm,r8 5
r m21

r m̃
%m21 wm21~11tqm!,

%m,s8 wm,s8 5%m wm~11tqm!, ~25!

%m,l8 wm,l8 5
l m11

l m̃
%m11 wm11~11tqm!.

The source termqm is taken constant in every cell sinc
more general choices affect only terms that drop out in
macroscopic limit. The particular form ofqm will only be
specified later, in order to demonstrate that there is aunique
choice forqm , where the time evolution of the kinetic en
ergy can become consistent with thermodynamics. Ot
choices for the source termqm lead to a nonvanishing en
tropy flux F (thermostat), and can be considered to character
a thermostat in the spirit of nonequilibrium molecular d
namics.

An update of the kinetic-energy density can be calcula
similarly to the update of the particle density. In cellm the
average value%m8 wm8 after one time step is obtained by a
eraging the different contributions on the strips in cellm @cf.
Eq. ~25!#, yielding

%m8 wm8 5@%mwm~12r m2 l m!1r m21%m21wm21

1 l m11%m11wm11#~11tqm!. ~26!

For a fixed set of transition probabilitiesr m ,sm ,l m , andqm
50, Eq. ~26! amounts to a passive advection of the fieldw
by the deterministic dynamics. The possible dependenc
the transition probabilities on differences of the coar
grainedw and the presence of the sourceqm , however, make
the advection nonpassive.

Equation ~26! can also be rewritten in the form of th
discrete balance equation

b~%m8 wm8 2%mwm!

t
5b%m8 wm8

qm

11tqm
2

j m
(%w)2 j m21

(%w)

a
.

~27!
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The first term on the right-hand side characterizes the so
strength of the field%mwm per unit timet, and the second
one is the discrete divergence of the%w current,

j m
(%w)5

ab

t
~r m%mwm2 l m11%m11wm11!. ~28!

Since %w plays the role of a kinetic energy, we consid
j (%w) to be an energy current.

C. Diffusion and drift

The local transition probabilitiesr m , sm , and l m govern
the evolution of the coarse-grained densities%m andwm . In
view of the master equations~22!, the cell-to-cell dynamics
of the model is equivalent to the dynamics of random wa
ers with fixed step lengtha and local transition probabilities
r m and l m over time unitt. Such random walks are chara
terized@39# by the local driftvm and diffusion coefficientD:

r m2 l m5
t

a
vm , ~29a!

r m1 l m5
2t

a2
D. ~29b!

Hence, the transition probabilitiesr m and l m can be ex-
pressed as

r m5
tD

a2 S 11
avm

2D D , ~30a!

l m5
tD

a2 S 12
avm

2D D . ~30b!

We allow in the present paper only for a location depende
of the drift vm , but keep the diffusion coefficient spatiall
homogeneous. Them dependence of the drift should be
consequence of the inhomogeneity of the kinetic-ene
~temperature! gradient along the chain.

In spite of the freedom we still have in specifyingvm ,
these definitions already allow us to write the currents i
form very close to their thermodynamic counterparts. T
current for the phase-space density appears in the form

j m5
b

2
~%mvm1%m11vm11!2bD

%m112%m

a
, ~31a!

a discrete version of Eq.~3a!. Similarly, for the%w current
one obtains

j m
(%w)5wmj m2b %m11D

wm112wm

a S 12
avm11

2D D ,

~31b!

which comprises an advection of thew fields by the particle
current and a contribution from the discrete gradient of
kinetic energy.
ce

-

e

y

a
e

e

D. Parametrizing phase-space contraction

Due to the conditionr m̃1 l m̃5r m1 l m , one can express
r m̃ andl m̃ in an analogous way to Eq.~30! by introducing an
additional parametere via

r m̃5
tD

a2 S 11e
avm

2D D , ~32a!

l m̃5
tD

a2 S 12e
avm

2D D . ~32b!

Using Eqs.~32! and ~30! to evaluater m11̃2 l m̃ , one easily
verifies that

e5
r m11̃2 l m̃

r m2 l m11
~33!

is constant along the chain. This number fully characteri
the phase-space contraction of the multibaker map. In h
mony with the common use in the dynamical-system lite
ture, we will also say thate characterizes thedissipation.It
will be kept constant when taking the macroscopic limit.

There are two special values of the parametere that are
worth mentioning. Whene takes the valuee51, the phase-
space dynamics is locally area preserving (r m11̃5r m ,l m̃

5 l m11). For e521 (r m11̃5 l m11 ,l m̃5r m) we call the re-
sulting phase-space dynamics time reversible, since the
tial area of any small region is recovered after taking
arbitrary closed path along the chain~at points differing from
the initial one, however, the area is in general different fro
the initial one!.

IV. ENTROPIES AND THEIR TIME EVOLUTION

A. Gibbs entropy S„G…

For the generalized multibaker map, the Gibbs entrop
defined in terms of the phase-space density%(x,p) and the
kinetic-energy densityw(x,p) as

S(G)52kBE dx dp %~x,p! ln
%~x,p!

%!~w~x,p!!
, ~34!

where %!(w) is a reference density, which depends onw,
and, through it, also on the phase-space coordinates (kB de-
notes Boltzmann’s constant!. We write%!(w) in the form

%!~w!5
%!

f „w~x,p!…
, ~35!

where%! is a constant reference phase-space density, af
is a dimensionless function. The actual form off (w) will be
determined below by the requirement of consistency w
thermodynamics. At the moment we assume only that i
sufficiently smooth to expand it to second order in its arg
mentw.

The Gibbs entropySm
(G)8 after one time step can be ex

pressed by making use of Eqs.~21! and ~25! for the three
columns of cellm:
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Sm
(G)852kBab F ~12r m2 l m!%mlnS %m

%!
f (wm,s8 ) D

1r m21%m21lnS r m21

r m̃

%m21

%!
f (wm,r8 ) D

1 l m11%m11lnS l m11

l m̃

%m11

%!
f (wm,l8 ) D G . ~36!

After inserting the update~22! for the phase-space densit
subtractingSm

(G)52kBab%mln@%mf(wm)/%!#, and rearranging
terms, one finds

Sm
(G)82Sm

(G)

at
52kB

b

t F ~%m8 2%m! lnS %m

%!
f ~wm!D

1%m8 lnS f ~wm,s8 !

f ~wm!
D

1r m21%m21lnS r m21

r m̃

%m21

%m

f ~wm,r8 !

f ~wm,s8 !
D

1 l m11%m11lnS l m11

l m̃

%m11

%m

f ~wm,l8 !

f ~wm,s8 !
D G

[2
j m
(s)2 j m21

(s)

a
1F (thermostat)[F. ~37!

This can be interpreted as a balance equation for the G
entropy. The temporal change ofS(G) comprises two contri-
butions: the divergence of an entropy current

j m
(s)[2 j mkBlnS %m

%!
f ~wm!D

1kB

ablm11

t
%m11lnS %m11

%m

f ~wm11!

f ~wm! D ~38a!

and a flux into the thermostat

F (thermostat)

kB
[2

b

t F%m8 ln
f ~wm,s8 !

f ~wm!

1r m21%m21lnS r m21

r m̃

f ~wm,r8 ! f ~wm!

f ~wm,s8 ! f ~wm21!
D

1 l m11%m11lnS l m11

l m̃

f ~wm,l8 ! f ~wm!

f ~wm,s8 ! f ~wm11!
D G .

~38b!

In general, this decomposition is not unique. It will turn o
that F (thermostat) contains terms that can be combined to
divergence and hence transferred to the entropy current.
freedom can only be removed in the macroscopic lim
where in physically relevant situations the splitting is uniqu
In any case, the form of the current is close to the therm
dynamic one~3b!: it contains a contribution proportional t
bs

is
,
.
-

the current densityj and another term that by its dependen
on the functionf (w) characterizes the local kinetic-energ
gradient.

We identify the temporal change of the Gibbs entro
with the flux of the coarse-grained entropy. This is meanin
ful from an information theoretic point of view. After all, th
Gibbs entropy characterizes the information encoded in
microscopic time evolution of a system. Consequentl
changes of this entropy may only be due to an entropy c
rent and to a coupling to the thermostat, i.e., to terms l
those identified in Eq.~37!.

B. Coarse-grained entropyS

The coarse-grained entropySm of cell m is defined in an
analogous way to the Gibbs entropy~34!, but using now the
cell density%m and the cell’s kinetic-energy densitywm ,

Sm52kBab%mlnS %m

%!
f ~wm!D . ~39!

The coarse-grained entropy of cellm after one time step is

Sm8 52kBab%m8 lnS %m8

%!
f ~wm8 !D . ~40!

It depends on the updated values of the coarse-grained q
tities.

In order to find the balance equation for the coar
grained entropy, we make use of the argument of the pr
ous subsection that the change in the Gibbs entropy ma
interpreted as the macroscopic entropy flux. This allows
to rewrite the temporal change of the coarse-grained entr
as

DSm

t
[

Sm8 2Sm

t
5

Sm
(G)82Sm

(G)

t
1

~Sm8 2Sm
(G)8!2~Sm2Sm

(G)!

t
.

~41!

The first term on the right-hand side is the entropy fl
DeSm /t through cellm, and the second one represents
irreversible entropy productionD iSm /t. Hence, Eq.~41!
constitutes a discrete entropy balance in the form

DSm5DeSm1D iSm ~42!

with

DeSm5Sm
(G)82Sm

(G) , ~43a!

D iSm5~Sm8 2Sm
(G)8!2~Sm2Sm

(G)!. ~43b!

In the information theoretic interpretation of entropies, t
differenceSm2Sm

(G) measures the information of a micro
scopic system which cannot be resolved by a coarse-gra
description. Hence,D iSm is the increase per time unitt of
the information which cannot be resolved when characte
ing the state of the system by coarse-grained densities.
positive by construction, and, except for a transient beha
obtained for certain initial conditions~which will not be con-
sidered here!, it can only increase.
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Note that the entropySm and the differenceSm2Sm
(G)

might depend in general on details of the coarse grain
This dependence drops out in the macroscopic limit, wh
calculating temporal changes~cf. Appendix B!. All quanti-
ties appearing in the entropy balance~42! will turn out to be
thermodynamically well-defined observables.

As a last step, we discuss the explicit form of the the r
of irreversible entropy production. The initial condition th
the system is prepared with uniform densities in every c
implies Sm5Sm

(G) . The irreversible entropy change durin
one time step is therefore the difference between the G
and the coarse-grained entropies taken after one time

D iSm5Sm8 2Sm
(G)8 . It can be split into two parts, an

f-independent part, which comprises contributions due to
particle current, and another one, which is related to inhom
geneities in the kinetic-energy density, and hence in temp
ture. We write

D iSm5D iSm
(particle)1D iSm

(heat), ~44!

where

D iSm
(particle)5kBab F2%m8 ln

%m8

%m

1r m21%m21 lnS r m21

r̃ m

%m21

%m
D

1 l m11%m11 lnS l m11

l̃ m

%m11

%m
D G ~45a!

and

D iSm
(heat)5kBab S 2%m8 ln

f ~wm8 !

f ~wm,s8 !

1r m21%m21 ln
f ~wm,r8 !

f ~wm,s8 !

1 l m11%m11 ln
f ~wm,l8 !

f ~wm,s8 !
D . ~45b!

All terms appearing in Eqs.~45! have a proper physica
meaning. The first one in each equation characterizes
change of entropy due to the time evolution of the coar
grained fields. The others amount to an entropy of mixing
regions in phase space with different phase-space or kin
energy densities. Note that contributions from phase-sp
contraction appear only inD iSm

(particle).

V. THE MACROSCOPIC LIMIT

A. Definition of the limit

The macroscopic limit implies thata!L, N@1, andt is
much smaller than typical macroscopic time scales~for in-
stance,L2/D). Formally it is defined as

a,t→0 ~46!
g.
n

e

ll

bs
ep

e
-

a-

he
-
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ce

such that the spatial coordinate

x[am ~47!

is finite. The phase-space density%m integrated over the mo
mentumlike variablep becomes the local particle densi
n(x). Since%m is independent ofp, the integration corre-
sponds to a multiplication with the vertical cell sizeb. As
mentioned earlier, the fieldw is assumed to go over into th
local temperatureT(x) in the macroscopic limit. Thus we
have

b%m→n~x!, ~48a!

wm→CT~x!, ~48b!

where C is a constant of dimension 1 over temperatu
Moreover, the local drift, diffusion, and source strengthq are
kept finite while taking the limit

D→D, ~49a!

vm→v~E,T,]xT!, ~49b!

qm→q~x!. ~49c!

E denotes the external field. In the following we do not wr
out thex dependence of the fields, the drift, and the sou
term explicitly.

B. Number and kinetic-energy density

We first notice that under the assumption of smoothn
the spatial dependence of the two fields can be expresse

b%m61→n6a]xn1
a2

2
]x

2n,

wm61→CT6a]x~CT!1
a2

2
]x

2~CT!.

~50!

In order to calculate the macroscopic limit of the partic
current~31a! we use Eqs.~30! and ~49!, to obtain

j 5vn2D]xn. ~51!

From Eq. ~24!, the time evolution of the densityn can be
obtained as

] tn52]x~nv !1D]x
2n. ~52!

Similarly, we have for the time evolution ofnT @cf. Eqs.
~27! and ~31b!#

] t~nT!52]xj (nT)1nTq ~53!

with the nT current

j (nT)5T j2nD ]xT. ~54!

C. Irreversible entropy production

For the contribution~45a! of the particle current to the
irreversible entropy production we obtain~cf. the analogous
calculation in@17,18# for details!

D iSm
(particle)

kBat
5

j e
2

nD
, ~55a!
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where

j e[ j 2
11e

2
nv5

12e

2
nv2D]xn ~55b!

agrees with the particle current~51! up to the dissipation-
dependent term (12e)/2.

The other contribution~45b! to the irreversible entropy
production comprises the explicit dependence on the kine
energy field. It can be evaluated in a straightforward man
by Taylor expanding the functionf and the logarithms to
quadratic order aroundwm,s8 . The terms linear in
f 8(wm,s8 )/ f (wm,s8 ) exactly cancel.@Here f 8(z) denotes the de
rivative of f (z) with respect toz]. In nonvanishing order the
macroscopic limit is therefore

D iSm
(heat)

kBat
5nD~]xCT!2 F f 9~CT!

f ~CT!
2S f 8~CT!

f ~CT! D 2G .
~55c!

Note that the square bracket can also be written as the se
derivative of lnf.

D. Entropy flux

By expandingf (wm61) to linear order aroundwm , one
finds for the macroscopic limit of the entropy current~38a!

j (s)

kB
52 j ln

n f~CT!

n!
1D]xn1nD]x~CT!

f 8~CT!

f ~CT!
,

~56a!

wheren* [b%* is a reference particle density, which is co
stant in space and time.

The macroscopic limit of the entropy flux into the the
mostat@Eq. ~38b!# is found to be

F (thermostat)

kB
52nCT

f 8~CT!

f ~CT!
q2

v
D S ~12e!2

4
nv1eD]xnD

1]x~nv !. ~56b!

It contains the spatial derivative]x(nv), which underpins
our earlier statement that the splitting of the entropy flux in
the divergence of a current and a flux going directly into
thermostat is not unique. It is natural to remove the deri
tive from F (thermostat), which leads to the entropy current

j 1
(s)

kB
52 j S 11 ln

n f~CT!

n! D 1nD]x~CT!
f 8~CT!

f ~CT!
,

~57a!

and to the flux

F1
(thermostat)

kB
52nCT

f 8~CT!

f ~CT!
q2

v
D S ~12e!2

4
nv1eD]xnD .

~57b!

However, there are othere-dependent splittings, too. For in
stance, by adding (11e)nv/2 to the entropy current one ob
tains
c-
er

nd

-

j 2
(s)

kB
52 j ln

n f~CT!

n!
2 j e1nD]x~CT!

f 8~CT!

f ~CT!
~58a!

and

F2
(thermostat)

kB
52nCT

f 8~CT!

f ~CT!
q2

12e

2

v
D

j e1
11e

2
n]xv.

~58b!

This shows that the splitting of the total entropy flux into
divergence of an entropy current and a fluxF (thermostat)is in
general not unique for arbitrary values ofe, not even in the
macroscopic limit.

VI. CONSISTENCY WITH THERMODYNAMICS

Having found the general expressions for the macrosco
limit of the particle and entropy fluxes, and of the irrever
ible entropy production, we are now in a position to ma
specific choices for the parametere, for the yet undetermined
functionsq(x) and f (w), and for the functionalv(E,T,]xT).

Comparing Eq.~51! with the thermodynamic particle cur
rent ~17!, we find that the driftv(E,T,]xT) must take the
form

v5vel2k
D

T
]xT. ~59!

Since earlier we have not found any necessity to fixv, this
choice is obviously consistent with thermodynamics. It
mains to be seen, however if the other constraints can
fulfilled.

The form of f can be fixed by observing that the ter
(]xT/T)2 appears in the irreversible entropy production~2a!
with thesamecoefficient as the2]xT/T term in the entropy
current~3b!. Comparing thef-dependent parts in Eqs.~55c!
and ~56a! @or Eqs.~57a! or ~58a!# we find that this can only
happen if

z„lnf ~z!…952„lnf ~z!…8. ~60!

The solution of this differential equation is a power law,

f ~z!5z2g ~61!

with g as a free constant parameter. A constant prefactor
be absorbed into the definition~35! of %!.

Concerning the value ofe, there are several constraint
which all lead to the same unique choice.~i! The requirement
to have the same coefficient in front of theveln and the
2D]xn terms in the entropy current~19! fixes the value ofe
to be21 @cf. j 2

(s) given by Eq.~58a!#. ~ii ! A natural splitting
of the entropy flux into the negative divergence of the e
tropy current and a flux into the thermostat holds fore5
21, too. In particular, we then havej 1

(s)5 j 2
(s) and

F1
(thermostat)5F2

(thermostat). ~iii ! The particle flux into the ther-
mostat Eq.~57b! @or Eq. ~58b!# has a well-defined meanin
only when its second term contains the full particle currenj.
For all these reasons the only dynamics that leads to ph
cally acceptable results corresponds to the choicee521,
which was connected to a time-reversible dissipation mec
nism in Sec. III D. For this choice also the particle-curre
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dependent part of the entropy production~55a! contains the
full square of j as required for consistency with the corr
sponding thermodynamic contribution~2a!.

With these choices

j (s)

kB
52 j S 11 ln

n~CT!2g

n! D 2nDg
]xT

T
. ~62!

In view of Eq. ~3b!, we identify the thermal conductivityl
and the Peltier coefficientP as

l5kBnDg, ~63a!

P

T
5

kB

e F212 lnS n

n!
~CT!2gD G .

~63b!

Through this, the transport coefficients could be expres
by system parameters. It is remarkable that finite values w
found for l andP although only the finiteness ofv andD
was assumed in the course of the macroscopic limit.

Similarly, for the flux into the thermostat one obtains

F (thermostat)

kB
5gnq2

v j

D
. ~64!

It contains a termv j /D corresponding to the change of e
tropy associated with Joule’s heating due to the driftv of the
particles. In thermodynamicsF (thermostat) vanishes in the
bulk, so that the source termq takes the form

q*

kB
5

v j

l
. ~65!

It describes the increase of the local kinetic energy due
dissipative heating. The heat thus deposited in the sys
will be transported to the boundaries by a heat current.

The entropy density obtained as the macroscopic limi
Eq. ~39! is

s52kBn lnS n

n!
~CT!2gD . ~66!

This implies that, up to an additive constant,eP/T is the
entropy per particles/n.

Since the multibaker map describes a system of wea
interacting particles@38#, it is natural to assume that not on
its entropy function~66! but also its chemical potential cor
responds to that of a classical ideal gas. We take

mc[kBT~11g!2T
s

n
. ~67!

From these two equations of stateg follows as the specific
heat at constant volume, measured in unitskB .

By substituting the chemical potential~67! into the ther-
modynamic expression of the Peltier coefficient~20! and
comparing it with the particular form obtained forP/T in
Eq. ~63b!, one immediately sees that the coefficientk of Eq.
~59! has to vanish. Hence,§5ea from Eq. ~18!, and from
Eq. ~16b! one recovers the Onsager relationP5Ta. The
d
re

to
m

f

ly

fact thatk turns out to be zero seems to be a special fea
of the baker model with three strips. In this version tempe
ture cannot move without an explicit particle motion, a
hence no thermal diffusion is expected.

Next, we consider the heat currentj (heat), i.e., the energy
current from which the potential energy of the external fie
is excluded,

j (heat)[T j (s)1mcj . ~68!

Inserting the explicit form of currentsj and j (s) @cf. Eqs.~51!
and ~62!# into Eq. ~9a!, this yields

j (heat)52l]xT1kBT g j . ~69!

This form is indeed consistent with thermodynamics, a
also with the macroscopic limit of thenT current~54!. Mul-
tiplying the latter bykBg, we recover Eq.~69!.

It is worth pointing out that due to the definition~16a! of
the diffusion coefficient and the particular form of the chem
cal potential~67!, we find that

selkBT5e2Dn. ~70!

Consequently, Einstein’s relation holds in the multibak
map. One can thus express the electric conductivity by
diffusion coefficientD in all formulas. In particular, we find

s (irr)5lS ¹T

T D 2

1
kBj 2

nD
, ~71!

a formula which in the case of constant temperature has
ready been derived in earlier versions of the multibaker m
@17,18#.

As further consequences of Einstein’s relation, we m
tion the following.~i! The electric driftvel ~4! is proportional
to E/T,

vel5
eD

kB

E

T
, ~72!

since the diffusion coefficient is assumed to be consta
~ii ! Comparing the heat and electric conductivities~63a! and
~70!, we find

l

selT
5gS kB

e D 2

, ~73!

which implies that this ratio is independent of thermod
namic state variables. Thus, the Wiedemann-Franz law@40#
proves to hold for the multibaker model.~iii ! the elementary
Drude theory@40# of metallic conduction predicts the See
beck coefficienta5P/T to be proportional tokB /e, i.e., to
be independent of temperature or density, which contrad
observation. Such a term is indeed present in Eq.~63b!, but
its second term also predicts a specific state depende
Thus, the present model turns out to describe certain feat
of transport more realistically than the classical Dru
model, although it cannot be expected to give a microsco
cally realistic theory of thermoelectric phenomena~which
contain essential quantum effects due to the strong de
eracy of the fermionic electron gas! @41#.

Finally, we consider the temperature equation followi
from Eq. ~53!. It takes the form
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] tT5qT1
]x~l]xT!

kBgn
2 j

]xT

n
, ~74!

which can be shown to be consistent with the general r
tion @cf. Eq. XIII.~85! of @33## expressing the entropy’s loca
time derivative as

] ts5
]x~l]xT!

T
2]xS eP j

T D1
e j2

selT
. ~75!

Here, the respective terms are contributions due to heat
duction, the Peltier and Joule heating. Using Eq.~66! and the
form of Peltier coefficient Eq.~63b!, one finds that Eq.~75!
becomes an identity if and only if the thermodynamic cho
Eq. ~65! is taken for the source term.

VII. THERMOSTATING

After having identified the condition for full consistenc
with thermodynamics in the form ofF (thermostat)50 or q
5q* , we turn to a short discussion of cases where there
be an entropy flux into the thermostat. In the thermostat
algorithm of nonequilibrium molecular dynamics@4#, heat is
taken out of the system in order to keep the tempera
constant in a spatially homogeneous steady state, an
avoid overheating due to the permanent acceleration
duced by en electric field. In our setting this corresponds
case with]xT50. Such a uniform temperature field is st
tionary forq50 only, as follows from the temperature equ
tion ~74!, such thatF (thermostat)52kBv j /D. It is indeed a
kind of Joule’s heat, which is let into the thermostat. No
however, that classical thermodynamics does not admit a
tionary homogeneous state]xT50 to be steady, since th
temperature increases in the bulk due to Joule’s heating.
indicates that thermostating is a tool by which one can tur
preselected temperature profile into a steady state. After
for every density profile consistent with given boundary co
ditions and a preselected fixed temperature profileT(x) there
is a source term distributionq(x), such that the temperatur
does not change in time@cf. Eq. ~74! with ] tT50#. In all
these casesF (thermostat)5kB(gnq2v j /D) is different from
zero. This shows that the algorithm for thermostating can
maintained even for complicated temperature profiles. Si
the sourceq appears neither in the currents, nor in the ir
versible entropy production, nor in the constraint for the O
sager relation to hold, nor in the transport coefficients,
local entropy balance is consistent with every choice ofq or
F (thermostat)provided the entropy flux appears in the form
Eq. ~5!. In general, the divergence of the entropy currentj (s)

contributes to the entropy fluxF, and the remaining part o
the reversible change of the entropy is transferred to the t
mostat.

We conclude that, although thermostating is a deviat
from classical thermodynamics, it seems to be theweakest
possible deviation in the sense that except for the form of
entropy flux it leaves alllocal thermodynamic relations in
variant. It can thus be seen as an idealization of a phys
thermostat~which can in reality only be attached to th
boundaries of a system!, where heat need not be transport
spatially~to the boundaries!, but can be released directly int
the surroundings. This gives rise to a nonthermodyna
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contribution to the entropy flux in the local entropy-balan
equation in a generalization of nonequilibrium thermod
namics@cf. Eqs.~5! and~1!#. This generalization of the loca
balance equation, however, does not imply at all a simila
of global transport properties, which in general depend
the spatial dependence of the fields. It is clear from Eq.~74!
that a state which is steady with a givenq(x) will not be
steady with the thermodynamic choiceq* (x). It will not
even have similar density profiles. Therefore, thermodyna
ics and thermostated descriptions might lead to very differ
results on the global level.

VIII. DISCUSSION

We have extended multibaker models by augmenting
density field% of these models with a temperaturelike fie
variablew. This allowed us to address problems like therm
electric cross effects requiring two independent thermo
namic driving fields. The model has the following feature

~a! The evolution equation ofw requires source term
reflecting the local irreversible heating of the system in
presence of transport.

~b! The temperature enters the entropy through a kine
energy-dependent normalization of the~phase-space! den-
sity.

~c! Consistency with the thermodynamic description
transport is achieved for densities that are coarse graine
regions of small spatial extension.

~d! Comparing the coarse-grained description with the m
croscopic one allows us to identify all contributions to t
local entropy balance.

~e! The time evolution of the system can be interpreted
that of weakly interacting particles, whose motion may on
be coupled through a mean-field-like dependence of the e
lution equations on the coarse-grained field variables. In
cordance with this, the resulting ‘‘multibaker’’ gas obeys t
classical ideal-gas equation of state. The Onsager rela
the Wiedemann-Franz law, and the Einstein relation can
derived, and expressions are found for the Peltier and S
beck coefficients.

~f! The local entropy balance of nonequilibrium therm
dynamics can be generalized by introducing at every loca
an instantaneous flow of entropy~i.e., of heat! into a thermo-
stat. When time reversibility is maintained, the dynamics
comes closely reminiscent of numerical algorithms related
Gaussian thermostats.

~g! Dissipation and thermostating play different roles
dynamical-system models for transport. The conditione5
21, for time reversibility, was found independently of th
choice ofF (thermostat). With this dissipation we can describ
both thermostated and nonthermostated systems.

It is remarkable that agreement with thermodynam
could be achieved by this comparatively simple model.
deed, strong restrictions on the choice of its parameters w
needed. The free functions~drift v, source strength of heatq,
and normalization of densitiesf ) had to be chosen appropr
ately, and a free dissipation-related parameter (e) had to be
fixed to a given value leading to a time-reversible dissipat
dynamics~even a Hamiltonian, volume-preserving dynami
is excluded!. With the given choices, however, we do n
find any restriction to weak gradients. This might be caus
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by the strong chaoticity and the Markovian property of t
dynamics, which is based on the baker map’s piecew
linear character and the fact that this family of maps adm
no pruning.

We have used a generalized concept of dynamical
tems to model open boundaries where transport can be
duced by appropriately chosen boundary conditions. T
time evolution of a macroscopically large number of ind
pendent ‘‘particles’’ is considered. Consequently, not even
steady states is the natural measure of the multibaker
relevant to calculate physical observables. After all, t
measure is defined only if the map is closed by perio
boundary conditions. Rather, another measure, the
forcedon the system by the open boundary conditions, pl
the central role. Such measures were first investigated
Gaspard and co-workers@3,21,22#.

Finally, we draw attention to the fact that the prese
model differs in important features from other models
transport by low-dimensional dynamical systems. The tr
sition probabilities~which are closely related to the drift an
diffusion coefficients! may depend on the coarse-grain
fields. This dependence leads to a dynamical system
many degrees of freedom. Consequently, the full time e
lution of the (x,p) dynamics together with the time depe
dence of the parameters can be interpreted as a pec
coupled map lattice designed to closely follow transp
equations. In a steady state, however, the parameters
time-independent values such that the time evolution of
particles is described by a two-dimensional dynamical s
tem, a map acting on (x,p), which in general lacks transla
tion invariance.

It is worth emphasizing that a further reduction of t
dimension is impossible. By neglecting thep variable ~i.e.,
when projecting the baker map to obtain a one-dimensio
map describing the transport of particles along thex direc-
tion! one finds full consistency with macroscopic transp
equations, but all drift-dependent terms disappear from
nt
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entropy balance, which therefore deviates from its thermo
namic form @Eqs. ~1! and ~2!#. Hence, modeling only the
transport processes via dynamical systems is a much e
enterprise than aiming also for a proper description of en
pies. From the point of view of a correct entropy balance,
existence of a phase-space variable orthogonal to the tr
port direction is essential. Only in this case can the frac
structures in the microscopic densities be followed, who
unresolvability leads to entropy production. It is an op
question at present, however, if a dissipative dynamics
needed for this, since a variation of the cell size in the se
of @31# might convert contributions to the entropy productio
due to local phase-space contraction into those of mixing

The suggested method for modeling thermoelectric cr
effects can be considered as a combination of a dynam
system and a hydrodynamic description. In addition to
appearance of a source term of the kinetic energy, the str
mixing character of the chaotic dynamics is essential, wh
leads to fractal phase-space patterns in the forced mea
considered. By that it ensures that irreversibility, and th
consistency with thermodynamics, can be reached in a
scription based on a low-dimensional dynamical system.
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APPENDIX A: RIGOROUS DEFINITION OF THE MAP
AND OF THE TIME EVOLUTION OF DENSITIES

Every point (x,p) with xP@a,a(N11)#, 1<m<N, and
yP@0,b# is mapped by the multibaker mapB as follows:
B~x,p!55
S x2am

l m
1a~m21!, l m21̃pD for 0 ,

x2am

a
, l m

S x2a~m1 l m!

sm
1am, blm̃1sm̃pD for l m ,

x2am

a
, l m1sm

S x2a~m1 l m1sm!

r m
1a~m11!, b( l m11̃1sm11̃1r m11̃pD for l m1sm ,

x2am

a
, 1.

~A1!
The dynamics of the phase-space density%(x,p;t) can be
interpreted as the time evolution of a typical set of poi
distributed in phase space. It is governed by the Froben
Perron equation

%~z;t1t!5E dz8d„z2B~z8!…%~z8;t !, ~A2!

wherez denotes points (x,p) in the phase space of the mult
baker chain.
s
s-

The boundary conditions are that%(z;t) is fixed to %0
and %N11 in the cells m50 and m5N11, respectively.
They are taken into account by the choice

%~z;t1t!5H %0 for B 21~z! in cell 0

%N11 for B 21~z! in cell N11,
~A3!

for pointsz whose preimagesB 21(z) lie in cell 0 (N11).
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Due to the chaoticity of the map and the difference in
boundary conditions, the density%(z;t) becomes more and
more irregular as time goes on~at least for any smooth initia
distribution!. Therefore, asymptotically the concept of de
sity is not well defined. Fort→` one assigns the measu
m(A)[ limt→`*Adz%(z;t) to any phase-space regionA.

Similarly to the phase-space density%(z;t), the time evo-
lution of the kinetic-energy density

v[%w ~A4!

is described by the integral equation

v~z;t1t!5@11tq~z!# E dz8d„z2B~z8!…v~z8;t !.

~A5!

In generalization of the Frobenius-Perron equation~A2!,
however, a source termq(x) is included now, which is
piecewise constant in the cells. The corresponding bound
conditions forw(z;t) are

v~z;t1t!5%0~N11!w0~N11! @11tq~z!# ~A6!

for points whose preimages are in cell 0 orN11, respec-
tively.

In this case, alsow(z;t) is no longer well defined asymp
totically. Instead, the stationary kinetic-energy distributi
should be considered as an invariant measuren, different
from m, which assigns the weight n(A)
[ limt→`*Adzv(z;t) to every regionA in phase space.

APPENDIX B: STRUCTURAL STABILITY
OF MACROSCOPIC RESULTS

In this appendix we generalize the results of Vollm
et al. @17# and of Gilbert and Dorfman@20# who considered
thermostated multibakers describing conduction with
cross effects. We demonstrate that, after taking the ma
scopic limit, our results are independent of the detailed p
scription of coarse graining. One part of such a demons
tion should be that the same results are obtained when co
graining is applied to any numbermc of successive cells
after every time step. In this case all previous results
quantities of unit volume remain unchanged in the mac
scopic limit for any fixedmc , since both the length of the
investigated region and the differences of the values of
coarse-grained fields become multiplied by a factormc , and
thus the macroscopic gradients do not change.

We therefore concentrate on the more involved case
coarse graining on the cells only after everyn time steps.
From a density that is constant in each cell, the dynam
generates structure on thenth level of the refining partition
obtained by thenth images of the cells. Structural stability
demonstrated by showing that the total entropy produc
can be decomposed into a sum of contributions from coa
graining on the different levels~starting with the finest struc
tures! and that all these contributions are the same in
macroscopic limit. This is equivalent to showing that coa
graining may also be applied to a finer partitioning within t
cells, without affecting the resulting thermodynamic re
tions. For the sake of conciseness we immediately exp
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the physically relevant casef (z)5z2g @cf. Eq. ~61!#, sup-
press the normalization constant%! of the density and Bolt-
zmann’s constantkB , and only work out the casen52. Al-
though this corresponds to just the simplest possibility
indicates the strategy to be followed when discussing furt
refinements@42#.

1. Preliminaries

We first extend our notation in order to describe densiti
entropies, and fluxes defined on the different levels of coa
graining. To this end we consider the level-2 partitioning~cf.
Fig. 3! of the cells two time steps after the initial coar
graining. Again primes denote quantities evaluated after
first application of the mapping. Similarly, double primes a
used for the values after two iterations. Note that the tran
tion probabilitiesr m , sm, and l m and the widths and height
of the corresponding columns and strips also receive prim
now, due to their possible dependence on%m andwm ~which
evolve in time!.

In every cell m there are 32 strips labeled by a pair o
symbols (p,q) with p,qP$L,S,R%; p indicates the strip
(L,S,R) of Fig. 2~b! in which the point is located after on
time step~irrespective of the cell index!, andq specifies its
position in the strip (L,S,R) after the second time step. Th
strips (p,q) have heightbsp,q̃5bsm,q̃8 smq ,p̃ , and carry den-

sities%m9 (p,q) andwm9 (p,q). Here,

sm,q̃5H r m̃ for q5R

sm̃ for q5S

l m̃ for q5L

~B1!

is a shorthand notation for the height after one time step,
the subscript

mq5H m11 for q5L

m for q5S

m21 for q5R

~B2!

is used as a book-keeping device to indicate the cell fr
which come the points in a given strip. An analogous de
nition holds for the quantitiessm,q without tildes.

FIG. 3. Notation used to define the level-2 partitioning of a c
after two applications of the map. Every strip is labeled by a tw
letter sequencep,q, wherep,qP$L,S,R% label the level-2 strips.
(p stands for the level-2 strips within level-1 strips selected by
label q.! To illustrate the use of these labels, the heights of a f
strips are indicated at the left side of the cell.
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We call %m9 (p,q), %m9 (q), and %m9 @%m9 (p,q)wm9 (p,q),
%m9 (q)wm9 (q), and %m9 wm9 ] the level-2, level-1, and level-0
densities@kinetic-energy densities# after two time steps, re
spectively. By construction, the level-0 densities coinc
with the cell densities considered in preceding sections.
densities defined on different levels are related to each o
since coarse graining preserves their average value in
cell:

%m9 5(
q

sm,q̃8 %m9 ~q!5(
q

sm,q̃8 (
p

smq ,p̃ %m9 ~p,q!,

~B3a!

%m9 wm9 5(
q

sm,q̃8 %m9 ~q!wm9 ~q!

5(
q

sm,q̃8 (
p

smq ,p̃ %m9 ~p,q!wm9 ~p,q!.

~B3b!

Based on the time evolution of the fields, relations b
tween densities at different instants of time can be calcula
Taking into account the respective actions~21! and ~25! of
the mapping on the densities% andw, we obtain

%m9 ~p,q!5
smq ,q8

sm,q̃8
%mq

8 ~p!5
smq ,q8

sm,q̃8

smq,p ,p

smq ,p̃

%mq,p
,

~B4a!
e
e
er
ch

-
d.

wm9 ~p,q!5wmq
8 ~p!~11tqm8 !5wmq,p

~11tqmq
!~11tqm8 !.

~B4b!

Here mp,q denotes the action of Eq.~B2! applied tomp :
mp,q5(mp)q . In order to follow the time evolution of the
entropies, we consider coarse-grained entropies defined
respect to densities of different resolution. The level-i en-
tropy Sm

( i ) is defined with respect to the level-i densities.
Thus, Sm

(0)[Sm52ab %mln(%mwm
2g), while the level-1 and

level-2 entropies at timet and 2t take the forms

Sm
(1)852ab(

p
sm,p̃%m8 ~p!ln@%m8 ~p!wm8

2g~p!#

~B5a!

and

Sm
(2)952ab(

p,q
sm,q̃8 smq ,p̃ %m9 ~p,q!

3 ln@%m9 ~p,q!wm9
2g~p,q!#, ~B5b!

respectively.

2. Entropy balance on level-1 strips

In order to obtain the entropy balance on level-1 stri
we relateSm

(2)9 to Sm
(1)8. Making use of Eqs.~B1!, ~B2!, ~B4!,

and ~B5b!, the level-2 entropy after two time stepsSm
(2)9 of

cell m can be worked out as
Sm
(2)952ab(

p,q
sm,q̃8 smq ,p̃ %m9 ~p,q!ln@%m9 ~p,q!w92gm~p,q!#

52ab(
q

smq ,q8 %mq
8 ln

smq ,q8

sm,q̃8
2ab(

p,q
smq ,q8 smq,p ,p%mq,p

ln@%mq
8 ~p!wmq

8 ~p!2g~11tqm8 !2g# ~B6!

where%mq
8 5(psmq ,p̃ %mq

8 (p).

By using Eq.~B5a!, Sm
(2)9 takes the form

Sm
(2)952ab(

q
smq ,q8 %mq

8 ln
smq ,q8

sm,q̃8
1(

q
smq ,q8 Smq

(1)81ab g(
q

smq ,q8 %mq
8 ln~11tqm8 !, ~B7!

which, after carrying out the summation overq, leads to the level-1 generalization of the the entropy flux,

DeSm
(1)8[Sm

(2)92Sm
(1)8

52ab rm218 (
p

sm21,p̃%m218 ~p!lnS %m218 ~p!wm2182g ~p!
r m21

r m̃
D

2ab lm118 (
p

sm11,p̃%m118 ~p!lnS %m118 ~p!wm1182g ~p!
l m11

l m̃
D

1ab ~r m8 1 l m8 !(
p

sm,p̃%m8 ~p!ln@%m8 ~p!wm8
2g~p!#1ab g(

q
smq ,q8 %mq

8 ln~11tqm8 !. ~B8!
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The entropy balance for the level-1 strips then reads

DSm
(1)8[Sm

(1)92Sm
(1)8[D iSm

(1)81DeSm
(1)8 ~B9!

with the level-1 irreversible entropy production

D iSm
(1)85Sm

(1)92Sm
(2)9. ~B10!

Again it is related to the loss of information on the micr
scopic state of the system when applying a coarse-gra
description.

If the densities%mq
8 are uniform in the respective cell

mq , i.e., they do not depend on the partitioning labelp, the
above relations coincide with Eqs.~37! and ~45! @in which
%m8 is eliminated via Eq.~22!#. Typically, however, there is a
nonvanishing difference

dD iSm
(1)8[D iSm

(1)82D iSm
(0) , ~B11!

which disappears only in the macroscopic limit, as sho
below after the discussion of the entropy balance for coa
graining after every second time step.

3. Entropy balance for coarse graining after every second
time step

In order to denote temporal changes taken with a time
2t, we assign the superscript(2) to D. A direct consequence
of Eq. ~B8! is that the entropy fluxDe

(2)Sm
(0) after two time

steps is

De
(2)Sm

(0)[2Sm
(0)1Sm

(2)952Sm
(0)1Sm

(1)82Sm
(1)81Sm

(2)9

[DeSm
(0)1DeSm

(1)8. ~B12!

This flux is the two-time-step generalization of the entro
flux DeSm .

In order to establish the entropy balance, the change
the coarse-grained entropyD (2)Sm

(0) is considered~without
coarse graining after the first step!,

D (2)Sm
(0)[Sm

(0)92Sm
(0)5Sm

(0)92Sm
(2)91Sm

(2)92Sm
(0)

5Sm
(0)92Sm

(2)91De
(2)Sm

(0) . ~B13!

Thus, the two-step irreversible entropy changeD i
(2)Sm

(0) takes
the form
ed

n
e

g

of

D i
(2)Sm

(0)[D (2)Sm
(0)2De

(2)Sm
(0)5Sm

(0)92Sm
(2)9. ~B14!

Again it is identified as the loss of information caused
coarse graining.

Note that this rate of entropy production can be expres
as

D i
(2)Sm

(0)5D iSm
(0)81D iSm

(1)8 ~B15!

whereD iSm
( j )5Sm

( j )82Sm
( j 11)8 ( j 50,1). When coarse graining

is applied after each time step, the entropy production

D iSm
(0)1D iSm

(0)8. Thus,dD iSm
(1)8 also amounts to the differ

ence between the irreversible entropy production of
cases, where coarse graining is applied after each and
every second time step.

4. Evaluation of dD iSm
„1…8

We recall that%m9 (q) and wm9 (q) denote the fields afte
two time steps, when coarse graining is applied on
level-1 partition. The level-1 entropy after two time steps

Sm
(1)952ab(

q
sm,q̃8 %m9 ~q!ln@%m9 ~q!wm9 ~q!2g#

52ab(
q

smq ,q8 %mq
8 ln

smq ,q8

sm,q̃8
1(

q
smq ,q8

3$2ab %mq
8 ln@%mq

8 wmq
8 2g~11tqm!2g#%.

~B16!

Using the form~40! of the coarse-grained entropy, we obta

Sm
(1)952ab(

q
smq ,q8 %mq

8 ln
smq ,q8

sm,q̃8
1(

q
smq ,q8 Smq

(0)8

1ab g(
q

smq ,q8 %mq
8 ln~11tqm!, ~B17!

whereSmq

(0)8 is the coarse-grained entropy of cellmq evalu-

ated after one time step. This form of level-1 entropy c
straightforwardly be compared with the level-2 entropy~B7!,
leading to
D iSm
(1)85Sm

(1)92Sm
(2)95(

q
smq ,q8 ~Smq

(0)82Smq

(1)8!

[smD iSm
(0)1r m21D iSm21

(0) 1 l m11D iSm11
(0)

5D iSm
(0)2r m~D iSm

(0)2D iSm21
(0) !2 l m~D iSm

(0)2D iSm11
(0) !1~r m218 2r m!D iSm21

(0) 1~ l m118 2 l m!D iSm11
(0) , ~B18!
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where we have used thatsm512r m2 l m . Expressingr m and
l m in terms of driving forces and transport parameters~30!
and keeping only leading order terms ina, one obtains

dD iS5tD]x
2~D iS

(0)!2tv]x~D iS
(0)!2t~]xv !D iS

(0)

1O~t2,a!. ~B19!

After division by at, the right-hand side of Eq.~B19! con-
tains the rate of irreversible entropy productionD iS

(0)/at
and its spatial derivatives, becauseD iS

(0)/at has a finite
macroscopic limit. Consequently, the difference in the
tropy productiondD iS/(at) vanishes in the macroscop
limit, when t→0.

Since the temporal change of the level-0 coarse-grai
entropy is~by definition! unaltered by changes of the pr
scription for coarse graining,
-

cs

-

i,

e

-

d

D (2)Sm
(0)5Sm

(0)92Sm
(0)5Sm

(0)92Sm
(0)81Sm

(0)82Sm
(0)

5DSm
(0)81DSm

(0) , ~B20!

the entropy flux, i.e., the difference between the change
the coarse-grained entropy and the irreversible entropy
duction, also takes the same macroscopic limit, regardles
the procedure for coarse graining.

Note that the calculations given in this Appendix can
generalized in a straightforward manner to account for av
aging only after everyn time steps on any finite levelk of
the partitioning of the cells@42#. All these approaches diffe
only by terms that can be expressed as a product oft and
spatial derivatives of the macroscopic rate of irreversible
tropy production. For largern and k, more and higher de-
rivatives appear.
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