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A consistent description of simultaneous heat and particle transport, including cross effects, and the asso-
ciated entropy balance is given in the framework of a deterministic dynamical system. This is achieved by a
multibaker map where, in addition to the phase-space density of the multibaker, a second field with appropriate
source terms is included in order to mimic a spatial temperature distribution and its time evolution. Conditions
are given to ensure consistency in an appropriately defined continuum limit with the thermodynamic entropy
balance. They leave as the only free parameter of the model the entropy flux let directly into the surroundings.
If it vanishes in the bulk, the transport properties of the model are described by the thermodynamic transport
equations. Another choice leads to a uniform temperature distribution. It represents transport problems treated
by means of a thermostating algorithm, similar to the one considered in nonequilibrium molecular dynamics.

PACS numbgs): 05.45.Ac, 05.70.Ln, 05.26.y, 51.20+d

[. INTRODUCTION est, however, to understand how thermodynamic cross ef-
fects generated by the presence of tiwdependentriving

Irreversibility in transport models based on dynamicalforces can be described in the framework of dynamical-
systems with only dew degrees of freedohas become the ~system theoryas for many-particle systems see, €[g89)).
subject of intensive recent studi¢s—11. They illustrate  The case of thermoelectric phenomena in which the driving
how macroscopic transport coefficients are related to théorces are(i) the temperature difference afid) the electric
properties of the microscopic dynamics. It is a remarkabldield and/or a density gradient is illustrated by Fig. 1. The
discovery that in chaotic dynamical systems a rate of irrecross effects imply that the temperature gradient contributes
versible entropy production can be defin@g6,7,9,12—2p  to the electric current, and the density gradient to the heat
This development opens the possibility of requiring for acurrent. Recently, the authors of the present paper suggested
consistent dynamical-system modeling of an irreversible proan elementary model to study these effe@6]. Here, we
cess the derivation of both the transport equations and thgeneralize it to explore the conditions under which consis-
entropy balance. In our approach we shall observe this corf€ncy with thermodynamics can be found.
straint. A part of the above mentioned problems with the entropy

Many models[4—10] were originally designed to rely on balance has recently been clarifid®—18 in the framework
equations of motion, where transport is induced by an exterof multibaker maps modeling quasi-one-dimensional particle
nal field and the(average work done by the field on the transport at constant temperature. These models are given in
systems is removed by a so-called Gaussian thermostat. TH&rms of the time evolution of thenultibake) phase-space
approach is commonly implemented with periodic boundarydensity in a corresponding two-dimensiorsahgle-particle
conditions. In spite of extensive numerical investigationsPhase spagewhich in this case consists of a band of length
however, there are conceptual problems in the interpretatioh- The fixed width represents a phase-space varipbile
of the results as far as the entrofiyeal flux is concerned. addition to the spatial coordinate along the band. The
After all, it is not obvious how this flux can come about in a Multibaker map defines a discrete dynamicé. below,
system with periodic boundaries. Moreover, the averag&vhich is one-to-one on the band, but does not necessarily
phase-space contraction is commonly taken as a measure Rffeserve the volume locally. A recent paper by Tasaki and
entropy production. This limits these considerations to the
overall entropy balance of the full system. It is not possible - “thermostat
to address the local balance of nonequilibrium thermody-

namics. The aim of the present article is to investigate a class |& & ~ heat S

of dynamical systems tailored to describe simultaneous par- %H'J particle §

ticle and heat transport, driven by appropriate boundary con- = L =

ditions and an external field. We work out tleeal entropy —>

balance, and identify conditions under which the model can

be consistent with nonequilibrium thermodynamics. FIG. 1. Graphic illustration of the transport process considered.

Earlier low-dimensional models were devoted exclusivelya system of spatial extension is attached to reservoirs inducing
to either particle(mass, chargetransport[5,6,21—-26 or t0  particle and heat currents due to the differences in the denéities
heat conductivity[27,28. These transport processes areand temperature€l) at the two ends, as indicated by the arrows.
driven by a single thermodynamic force. It is of basic inter-Along the system heat can be exchanged with a thermostat.

1063-651X/2000/6@)/34917)/$15.00 PRE 62 349 ©2000 The American Physical Society



350 MATYAS, TEL, AND VOLLMER PRE 62

Gaspard 31] shows that analogous results can be obtained oeE

with area-preserving maps by making the width of the band Vel= g (4)
position dependent. This varying height was connected to

changes in thépotentia) energy, and does not appear as a

driving force independent of the density gradient or the exyy ig the peltier coefficient, and the thermoelectric power

ternallf_igldk. h | bl (or Seebeck coefficient Thermodynamic cross effects are
Multibaker maps have no natural momentum variabley,phitest in Eq(3), and the corresponding Onsager relations
comugated to the spauali coord|na¢eTh(_erefore, we qharac- imply a relation between the transport coefficieatandII.
terize the thermodynamic states byo lndgpend(_ent!elds. Since the entropy plays a central role in these relations,
Besides the phase-space dengitya new fieldw is intro-

) . : X one has to choose an appropriate entropy concept for the
duced, whose dynamics describes the evolution okthetic . inaker. One obvious candidate is the Gibbs entr§i%)
energy per particle i.e., ow corresponds to the kinetic-

density32 defined with respect to the phase-space derngitiBecause
eneTrgy eknsn)[ . ith ibri h d . of the ever refining phase-space structures that chaotic dy-
0 make contact with nonequilibrium thermodynamics, o5 picg generates from every smooth initial density, this en-
the time evolution of average densities in regions of smal

X . i . . ropy neverbecomes time independent, not even in a macro-
spatial extension along theaxis is considered. They will be by P

lled ined densiti ; i th scopically steady state. In contrast, the corresponding
called coarse-graine er_15|t|esTranspo_rt eql_Jatlons In the entropy S, whose definition is based on coarse-grained den-
form of differential equations are obtained in a continuum

. - . & sities, is thermodynamically well behaved, and its value per
limit, where the spatial resolution of coarse graining is muc

) ; ) . Nunit length is the analog of the entropy densigppearing in
smaller than the linear siZeof the system and the time unit Eq. (1). This entropy will be called theoarse-grained en-

7 of the dis_cretle dy_namics i‘:’“;nUCh Sho_“el'f thin thﬁt of thetropy. The irreversible entropy production of arbitrary steady
macroscopic relaxations. In thisacroscopic limithe phase- 54 honsteady states has been identified as the time deriva-
space densitye and the kinetic energy per particle are e of the difference between the Gibbs and the coarse-
related to the particle densityand to the local temperature grained entropy17,18.
T, respectively. N . Although the thermodynamic relatiof®b) requires the

, Itis not ObV'OL_JS that a determ|n|st|c dynqm|cal system astantropy flux to be the divergence of the entropy current, we
simple as a multibaker can fulfill all constraints required for 5o\ for deviations from thermodynamics in that we do not
consistency with thermodynami¢83]—not even when tak- gy qjde the presence of an additional term. This term is in-

ing the macroscopic limit. The thermodynamic entropy bal-tgryreted as the consequence of a thermostat, whictioean
ance relates the time derivative of the entropy dersitythe ¢4y remove or release heat, leading to an additional entropy
entropy productioro™ per unit volume and to the entropy flux P (thermostat) | such cases

flux @,
&tSZ O'(i") +&. (1) d=— axj (s) + q)(thermostat.) (5)

We consider thermoelectric phenomena induced by particles

of chargee in a transport process along theaxis. In @  Wwe say a system is thermostated wheneb&femostad gif.
system that is translation invariant perpendicular to the fers from zero. Depending on the details of the model, we are
axis, the quantities causing entropy changes can be expressgfle to study both nonthermostated and thermostated sys-
as[34] tems, and in the latter case we shall be able to generate
arbitrary stationary temperature profiles. To our knowledge,
these features have not yet been explored in nonequilibrium
(2a) molecular dynamics simulatiorig,29].

The paper is organized as follows. In Sec. Il we revisit the
d=—g.i® thermodynamics of irreversible processes by rewriting the
. (2b) ; ! X

expressions of entropy production as well as of particle and
entropy currents in forms amenable to a comparison with the
results of multibaker maps. Subsequer(Bec. Ill), we in-
troduce the multibaker map, and discuss the time evolution
of the phase-space density and the kinetic-energy density.
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Hereo, and\ denote the electric and the heat conductivity,
respectively, and

. Oel The Gibbs and coarse-grained entropies and their dynamics
J=Nver™ g(&x"‘ﬁea‘?xn’ (38 are studied in Sec. IV. In Sec. V the macroscopic limit of the
obtained expressions is taken. Conditions on the baker dy-
oIl P namics. to make it consistent With' the_rmodynamics are ex-
=N = (3p)  Plored in Sec. VI. A short discussion is devoted to thermo-
T T stated case&Sec. VII), and our main results are summarized

in Sec. VIII. The paper is augmented by two Appendixes.
are the particle and the entropy current densities, respegppendix A is devoted to a formal definition of the map and
tively. In Eq. (3), u. denotes the chemical potential of the the resulting time evolution of the densities. In Appendix B it
particles, and ¢ is the drift velocity due to an external elec- is shown that the macroscopic results do not depend on the
tric field E, which is related targ, by prescription for coarse graining.
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Il. NONEQUILIBRIUM THERMODYNAMICS respectively. Therefore, in the spirit of nonequilibrium ther-

In this section we recall the thermodynamic description of?;(r)geysng?lcs’ these currents can be expressed in terms of the

thermoelectric transport induced by two independent driving

fields[33]. The most general situation is treated, which com- \ VT
prises the presence of an external field, as well as gradients j=- Lll?— le?, (109
in the particle density and the temperature.
) Vu VT
A. Thermodynamic forces and currents j®&=— LZlT - Lzz? (10b
We consider a system of particles of chaggevhich in-

teract with a lattice forming a background which ensures the Lysloo—L1slor VT Log.
electric neutrality of the system. The frame of reference is == L—n T L_u]' (109

fixed to this background. The degrees of freedom of the lat-

tice are not considered. As demonstrated explicitly for thewhere the latter expression fp({s) was obtained by inserting
periodic Lorentz gas, this setting leads to a chaotic, diffu-Eq. (109 into Eq. (10b). Moreover, by inserting Ec(10b)
sionlike motion of the particles. Due to @electrochemical into Eq.(9b), one expresses the irreversible entropy produc-
potential gradient and a temperature gradient, both a particlgon as

and an energy current are flowing through the systemj Let

andj“, respectively, denote the density of these currents in v Laaboo—Laglag (VT 22 N Lip— Lo VT

a frame of reference fixed to the lattice. In this setting the B Ly, T/ "Ly L, T
number density of particles and the densitys of the total (17
energy are locally preserve@he densityu also contains the ) ) _ _
potential energy due to an external field and the kinetic enAfter using the Onsager relation;,;=L,,, this expression

ergy of the ordered motion. for the irreversible entropy production is a quadratic form,
In order to derive the entropy balance in a region of fixedWhich takes only non-negative values provided that the ma-
volume, we start from the conservation laws trix of kinetic coefficients is positive definite, i.e., the well-
known conditionL ;L 5,— L 15L5,>0 is fulfilled [33,35].
dn=—Vj, (6a)
B. Identifying transport coefficients
du=—-VjW, (6b) ing P

It is worth expressing the kinetic coefficients; by
and express the time derivative of the entropy density pemeans of directly measurable quantities. The total electro-
unit volumes, chemical potential can be split as= u.+e¢, whereu, is

) the chemical part, ang is the electric potential. Since=
ds=—VjO+glm, (60  —Ve¢ andj.=ej is the electric current, we find that is

. . . roportional to the electric conductivityg>0:
in terms of the entropy current densit{) and the irrevers- prop el

ible entropy productiorr(™.

T
Considering a system in local equilibrium, the Gibbs re- L11=UL;. (123

lation €
Tds=du—udn, (7)  In the absence of a particle currefite., for j=0), Tj®

provides the heat current, such that in view of Ef)0)
holds, withT and x denoting the local temperature and elec-

trochemical potential, respectively. To find the time deriva- Ll oo~ I-12|-21:)\ (12
tive of s, we write the local temporal change of E{), Lqg '
o where\>0 is the heat conductivity. At zero particle current
HS=F U= o, (8  and constant chemical potential, a temperature gradient in-
duces an electric field, which is conventionally written as
in the form of Eq.(6¢) by identifying aVT, where « is called the thermoelectric powéor the
W Seebeck coefficientConsequently, from Eq103 one finds
N |
J(S):# (93 _aoyg 1
12— Te . ( C)

as the total entropy current, and _ _ _ _
Finally, in a system without temperature gradients, the en-

tropy current due to the presence of an electric curegnt
amounts td1ej/T, wherell is the Peltier coefficient. Hence,
Eqg. (100 implies

: 1 1
o= [0V = —VE=—((OVT+]Vu) T (9

as the irreversible entropy production.

Equation(9b) shows that the currenfjsandj® are con- L :HUel (129
jugate to the thermodynamic forcesVu/T and —VT/T, A7 e
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Using the phenomenological coefficierii?) we write

. Te|
j=——2(V,u,+eaVT), (13a
e
(= AVT+eH' 13b)

Note that the Onsager relatidn,,=L,; makes the Peltier

and Seebeck coefficients connected as
I=Ta. (14

Substituting Eqs(12) into (11) one thus derives Ed2a).

C. Relating transport and diffusion coefficients

It is worth replacing the chemical potential in the expres-
sions for the currents and entropy production by the densit)Z

n and temperatur@. We write

e2
V= Vn—cVT, (15)
Teg|
where the diffusion coefficient is defined as
_Uel dpug
D_ez(ﬁn)T' (169
and
_ e
g= ( aT) (16b)

n

is a quantity of dimension entropy per particle. By means o
the drift velocity v [EqQ. (4)] one can rewrite the particle

current density(133g as

) nD
J:ve|n—DVI’I—k?VT (17)
where
nD Ol
k?E_Z (ea—g) (18)
The entropy current then takes the form
j=—|N+k DeH VT+e —-DV 19
J - n T T T (Ueln n)! ( )
and in view of Eqs(14), (163, and(18) one obtains
_ Ipie dpie
el'[—kn( on ) ) T( P ) (20

n

Note that in the entropy currefi9) the coefficients in front
of thevgn and —DVn terms coincide.
We finally mention that by taking the limiE,e—0 at
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FIG. 2. Graphical illustration of the action of the multibaker
map on the phase spacg,|f). (&) The mapping is defined on a
omain of N=L/a identical rectangular cells of sizexb, with
oundary conditions imposed in two additional cells 0 &hé 1.

(b) After every time unitr each cell is divided into three columns,
which are squeezed and stretched to obtain horizontal strips of
width a. The average values of the fieldéx,p) andw(x,p) on the
cells (strips [cf. Egs. (21) and (25)] are given on the margins.
Iteration of this rule defines the time evolution.

one of the diffusing materials, and the quantk) is the
thermal diffusion coefficienft36]. Based on this analogy, we
considerkD in Eq. (18) as the thermal diffusion coefficient
of charged particles in the thermoelectric problem.

Ill. THE MULTIBAKER MAP

Baker maps are known to be prototypes of strongly cha-
otic systems[37]. Multibaker maps are a generalization,

Iwhere a spatially extended system is modeled by a chain of

mutually interrelated baker maps, in order to model transport
[21,22,24,16-18,31via the dynamics of thémultibake)
phase-space densipy. The single-particle phase space mod-
eled by the multibaker map consists Mfidentical cells of
width a and heightb, which are labeled by the indem
[Fig. 2@)]. After each time unitr every cell is divided into
three columngFig. 2(b)]. The right(left) column of width
ar,, (al,,) is mapped onto a strip of width and of height
brmrs (bin_1) in the right (left) neighboring cell. The
middle one preserves its are~§:sm. The map isglobally
phase-space preserving, i.8y+rm+!m="rm+m+Sm=1.

A formal definition is given in Appendix A. The map mimics
the time evolution of a many-particle system with weak in-
teractions in a single-particle phase spg&@|. The equilib-
rium equations of state will turn out to be those of a classical
ideal gas.

The (x,p) dynamics of the multibaker map is considered
to be amicroscopicdynamics in the sense that it is determin-
istic, chaotic, and mixing. It drives two fields which generate
ever refining phase-space structures.

As well as these fields, we also consider coarse-grained
densities obtained by averaging over the cells. The cell width
a is considered to be the smallest length scale where a ther-
modynamic description applies. In the spirit of local thermo-

constantell,e«, and o, /€?, the thermoelectric problem is dynamic equilibrium, the local averages of the microscopic
formally mapped onto the problem of thermal diffusion in avariables characterize the thermodynamic state in the cells.
binary mixture. In that case stands for the concentration of The temporal evolution of the coarse-grained versiong of
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andw is consequently expected to describe an approach to- b(e,—0m) im—im_1

ward a steady state, where the the coarse-grained fields no =— . (24
longer change in timé@n contrast to the fully resolved fields, T a

vyhich approach closer and closer toward fractal distribuy; can be seen as the discrete counterpart of (g. Note
tions). To emphasize that coarse graining is taken over thgy, by definition the current through the left boundary of
cells, the coarse-grained density will also be calleddélt ;¢ m'is the same as the current through the right boundary

density ; ;
: : . . of cell m—1. In this paper all types of currents associated
The dynamics of earlier multibaker models is the same oy, i cell m will also be defined as a flow through the right
all cells. There can be inhomogeneities in the densities, b%oundary.

the evolution equations are kept translation invariant. Here,
we relax this constraint by allowing the transfer rates of cell
m to depend on the coarse-grained fields in celand its
neighbors. This dependence mimics the effect of the thermo- The (x,p) dynamics does not imply any constraint an
dynamic driving force due, for instance, to a local temperadts time evolution can be chosen according to physical intu-
ture gradient. It induces am dependence of the parameters. ition. In contrast to the particle density, we consider the ki-
Since all calculations can be performed without ever refernetic energy per unit volumew,, as a nonconserved quan-
ring to the form of these dependencies, we will not yettity. In addition to a contribution from the particle flow, the
specify them but start from a map with a general set ofnew valueswy,; on the stripg =R, S, L will therefore contain
space- and time-dependent parameters. Their form will beéerms characterized by a local source strength which
fixed a posterioriby comparison with thermodynamics. accounts for a local heating:

Due to the self-similarity of the multibaker dynamics, the

B. Evolution of the kinetic-energy density

local transport and entropy balance can be worked out by a , ;o Tm-1 14

calculation considering one time step only. A discussion of @m,r Wm,r = m @m-1Wm-1(1+70m),

more general prescriptions for the coarse graining is rel-

egated to Appendix B. O Wi 6= @mWin(1+70,), (25)

A. Evolution of the phase-space density

m+1
Q;n,l Wr,n,I: ~ Qm+1Wm+1(1+ TQm)-

Thermodynamic transport equations describe the time I

evolution of the phase-space densigy and the kinetic-

energy densityv. For explicit calculations of their time evo- The source terng,, is taken constant in every cell since
lution we always start with the constant valugs andw,, in more general choices affect only terms that drop out in the
every cellm. This is convenient from a technical point of macroscopic limit. The particular form af,, will only be
view, and does not lead to a restriction of the domain ofspecified later, in order to demonstrate that there usigue
validity of the model, as demonstrated in Appendix B. After choice forq,,, where the time evolution of the kinetic en-
one step of iteration the densities will be piecewise constangrgy can become consistent with thermodynamics. Other
on the stripd =R, S,L defined in Fig. 20). Due to the con- choices for the source teriy, lead to a nonvanishing en-

servation of the particle number, they are tropy flux ®(hemosta) and can be considered to characterize
a thermostat in the spirit of nonequilibrium molecular dy-
;o _m-1 namics.
Omr= m Om-1, An update of the kinetic-energy density can be calculated
similarly to the update of the particle density. In cellthe
0hs=0m> (21)  average valu@,w,, after one time step is obtained by av-

eraging the different contributions on the strips in cellcf.
Eq. (25)], yielding

T

Im+1

Q;n,lz T Om+1- L
m Wi =[@mWm(1—Tmn=lm) + o 1@m-1Wm-1
The factorsr,,_; /1 andl .1 /T, give rise to local contrac- it 10 ms Wi 1 1(1+ 70m) . (26)

tion or expansion of phase-space volumes. _ N o
The coarse-grained densigy, after one time step is the FOra fixed set of transition probabilities, sy, |y, andqgpy

average of the contributiori®1) on the different strips: =0, Eq.(26) amounts to a passive advection of the fiaid
by the deterministic dynamics. The possible dependence of

or=1=rn=1em+tm-10m-1+!ms10ms1- (22 the transition probabilities on differences of the coarse-
grainedw and the presence of the souig;g, however, make
Multiplying the equation byr~* and introducing the current the advection nonpassive.
Equation(26) can also be rewritten in the form of the

~ab discrete balance equation
szj(rmgm_|m+19m+1) (23

b(Qr,nWr,n_Qme) _ , , Om JEr?W)_JEnQ—V\q
through the right boundary of ceth, Eq. (22) appears in the T =beomWn 1+ gy, a a '
form of a continuity equation, (27)




354

The first term on the right-hand side characterizes the source

strength of the fieldo ,w,, per unit timer, and the second
one is the discrete divergence of the current,

) ab
lEﬁW):T(erme_|m+1Qm+1Wm+1)- (28

Since pw plays the role of a kinetic energy, we consider
j@™ to be an energy current.

C. Diffusion and drift

The local transition probabilities,,, s, andl,, govern
the evolution of the coarse-grained densiiigsandw,,. In
view of the master equatiori22), the cell-to-cell dynamics

of the model is equivalent to the dynamics of random walk-

ers with fixed step length and local transition probabilities
rm andl,, over time unitr. Such random walks are charac-
terized[39] by the local driftv ,, and diffusion coefficienD:

rm—|m=avm, (29@
27

Mt ln=—s (29b)
a

Hence, the transition probabilities, and |, can be ex-
pressed as

_® 14+ Xm 30
rm_ a2 2D ’ ( a
| = D 3 av, 30b
m— a2 2D . ( )
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D. Parametrizing phase-space contraction

Due to the Conditiora+m=rm+lm, one can express
rm andl,, in an analogous way to E¢30) by introducing an
additional paramete¢ via

D[ 2m 32
rm_ a2 EZD ’ ( a)
(e PP (32b)
m=z 2D /"

Using Egs.(32) and (30) to evaluater,,;— I, one easily
verifies that

—~—

_rm+1_|m

~

€ (33

rm_|m+1

is constant along the chain. This number fully characterizes
the phase-space contraction of the multibaker map. In har-
mony with the common use in the dynamical-system litera-
ture, we will also say tha¢ characterizes thdissipation.It
will be kept constant when taking the macroscopic limit.
There are two special values of the parametehat are
worth mentioning. Where takes the valug=1, the phase-
space dynamics is locally area preserving,{z="rm, m
=lm+1). Fore=—-1 (m=lm+1,m=rm) we call the re-
sulting phase-space dynamics time reversible, since the ini-
tial area of any small region is recovered after taking an
arbitrary closed path along the chaat points differing from
the initial one, however, the area is in general different from
the initial ons.

IV. ENTROPIES AND THEIR TIME EVOLUTION
A. Gibbs entropy S©

We allow in the present paper only for a location dependence For the generalized multibaker map, the Gibbs entropy is

of the drift v,,,, but keep the diffusion coefficient spatially
homogeneous. Then dependence of the drift should be a

defined in terms of the phase-space dengity,p) and the
kinetic-energy densityv(x,p) as

consequence of the inhomogeneity of the kinetic-energy

(temperaturggradient along the chain.
In spite of the freedom we still have in specifying,,

o(x,p)

S@=_—k5 | dxd p) | ,
Bf xdp e(x,p) ne*(w(xyp))

(34

these definitions already allow us to write the currents in a
form very close to their thermodynamic counterparts. Th%hereg*(w) is a reference density, which dependsen

current for the phase-space density appears in the form

Om+1~ Pm

b
JmIE(QmUm+Qm+1Um+1)_bD , (3139

a discrete version of Eq3a). Similarly, for thepw current
one obtains

(31b

W, —W av
S (ow) _ . m+1 m m+1
Jgne )_Wme_me+1D a -

2D

which comprises an advection of thefields by the particle

and, through it, also on the phase-space coordindtgsié-
notes Boltzmann’s constagniWe write o *(w) in the form

*

. e
2" (w) fw(x.p)’ (35
whereg™ is a constant reference phase-space densityf and
is a dimensionless function. The actual formf@fv) will be
determined below by the requirement of consistency with
thermodynamics. At the moment we assume only that it is
sufficiently smooth to expand it to second order in its argu-
mentw.

The Gibbs entropys®)’ after one time step can be ex-

current and a contribution from the discrete gradient of thepressed by making use of Eq&1) and (25) for the three

kinetic energy.

columns of cellm:
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0 the current density and another term that by its dependence
S©)=—kgab | (1 —rm—Im)QmIn(—Tf(wr’n S)) on the functionf(w) characterizes the local kinetic-energy
' gradient.
We identify the temporal change of the Gibbs entropy
T 10m 1In< m-1 @m-1 f(w mr)) with the flux of the coarse-grained entropy. This is meaning-
tm o* ful from an information theoretic point of view. After all, the

Gibbs entropy characterizes the information encoded in the
microscopic time evolution of a system. Consequently,

changes of this entropy may only be due to an entropy cur-
rent and to a coupling to the thermostat, i.e., to terms like

After inserting the updaté2?) for the phase-space density, those identified in Eq(37).
subtractingS\®) = — kgabg In[ omf (Wi)/0*], and rearranging

Ims1 Qm+1
+1 m+1Qm+1|n
I

(36)

f(w mI)) -

terms, one finds B. Coarse-grained entropyS
(G)r _ (G) The coarse-grained entrof8, of cell mis defined in an
Sin Sin _ “lel—0m) In &f(w ) analogous way to the Gibbs entro(84), but using now the
ar mo=m x Lom cell densityg,, and the cell's kinetic-energy density,,,,
f(w o)
+g;n|n( f(W”"j) smz—kBabgmln(Q—Tf(wm)). (39)
m e
o dn Mm-1 @m-1 f(Wp) The coarse-grained entropy of cellafter one time step is
mETL T em f(wh
r__ ’ Q_r,‘n ’
|m+1 Qm+1 f(Wr,n,I) Sm_ kBameIn( Q* f(Wm)) . (40)
'Hm+1Qm+1|rI 'I\f 0 f(W’ )
m m m,s

It depends on the updated values of the coarse-grained quan-
tities.

In order to find the balance equation for the coarse-
grained entropy, we make use of the argument of the previ-
This can be interpreted as a balance equation for the Giblaus subsection that the change in the Gibbs entropy may be
entropy. The temporal change 8¢} comprises two contri- interpreted as the macroscopic entropy flux. This allows us

(S) jes (S)
= _ + ¢ (thermostatl_ (37
a .

butions: the divergence of an entropy current to rewrite the temporal change of the coarse-grained entropy
as
. . 0

JE?E—Jmksln(Q—Tﬂwm)) ASy_Sh=Sn_SP'-SF (S,= S~ (Sn=SP)
T T T T '
abl f(w 41
+kB :+1Qm+1|n<gg+1 i(vr:;-#)l)) (38@ ( )

m m The first term on the right-hand side is the entropy flux
and a flux into the thermostat AS,, /7 through cellm, and the second one represents an
irreversible entropy production\;S,,/7. Hence, Eq.(41)
¢ (thermostat) b fow’ ) constitutes a discrete entropy balance in the form
f m,s
T ke 79w
B m AS,=ASHTA S, (42
Fme1 T(Wo ) F(We) with
Frm-10m-1n| —= ;
M'm f(Wm,s)f(Wm—l) AgSy= SgnG)' _S§nG) ’ (433
| f(w, ) f(wp)
+Im+1em+1ln( o || AiSn=(Sh=SP") = (Sn=SF). (430)
Im f(Wm,s)f(Wm+1)

(38b) In the information theoretic interpretation of entropies, the
difference S,— S) measures the information of a micro-

In general, this decomposition is not unique. It will turn out scopic system which cannot be resolved by a coarse-grained
that ®(hemosta contains terms that can be combined to adescription. HenceA;S,, is the increase per time unit of
divergence and hence transferred to the entropy current. Thike information which cannot be resolved when characteriz-
freedom can only be removed in the macroscopic limit,ing the state of the system by coarse-grained densities. It is
where in physically relevant situations the splitting is unique.positive by construction, and, except for a transient behavior
In any case, the form of the current is close to the thermoebtained for certain initial condition@vhich will not be con-
dynamic one(3b): it contains a contribution proportional to sidered herg it can only increase.
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Note that the entropyS,, and the differenceS,,—S{®)  such that the spatial coordinate
might depend in general on details of the coarse graining.

This dependence drops out in the macroscopic limit, when x=am “7)
calculating temporal changédsf. Appendix B. All quanti- s finite. The phase-space density, integrated over the mo-
ties appearing in the entropy balan@?®) will turn out to be  mentumlike variablep becomes the local particle density
thermodynamically well-defined observables. n(x). Since g, is independent o, the integration corre-

As a last step, we discuss the explicit form of the the ratesponds to a multiplication with the vertical cell sibe As
of irreversible entropy production. The initial condition that mentioned earlier, the fielal is assumed to go over into the
the system is prepared with uniform densities in every cellocal temperaturel (x) in the macroscopic limit. Thus we
implies S“=SET]G). The irreversible entropy change during have
one time step is therefore the difference between the Gibbs
and the coarse-grained entropies taken after one time step

AiSy=S.—S©" It can be split into two parts, an Wiy— CT(X), (48b)
f-independent part, which comprises contributions due to th?vhereC is a constant of dimension 1 over temperature

particle current, and another one, which is related to inhomol\/loreover the local drift, diffusion, and source strengtre
geneities in the kinetic-energy density, and hence in tempergee ot finite while taking the limit
ture. We write

bom—n(X), (483

D—D, (493
A' :A_S(particle)+ A_S(heat)’ 44
iSm=AiSh S (44) o o(ET.4.T), (49b
where am—q(X). (499
(particle) . Om E denotes the external field. In the following we do not write
A ST ¥=kgab | e, InQ_ out thex dependence of the fields, the drift, and the source
m term explicitly.
(g _ o .
HF o 10m 1 In( m-1 Qg‘ 1) B. Number and kinetic-energy density
F'm m We first notice that under the assumption of smoothness
| the spatial dependence of the two fields can be expressed as
m+1 @m+1
+|m+1gm+l|n _ (45@ 2
I m Qm a 2
bo,-1—n*tadn+ 7axn,
and
a.2
, Wi 1— CT*+ady(CT)+ —d2(CT).
heat f(wy,) 2
A;S*=kgab | —of, In —— (50
f(wps)
In order to calculate the macroscopic limit of the particle
f(wp, ) current(318 we use Eqs(30) and(49), to obtain
Frm-1@m-1 In p
f(w), o) j=vn—Dayn. (51)
f(wp ) From Eg.(24), the time evolution of the density can be
Fln+1@mer IN——; (45D optained as
f(whs
an=—dy(nv)+Da2n. (52

All terms appearing in Eqs(45) have a proper physical
meaning. The first one in each equation characterizes the Similarly, we have for the time evolution ofT [cf. Egs.
change of entropy due to the time evolution of the coarset27) and(31b)]

grained fields. The others amount to an entropy of mixing of —_ 5 i(nT

regions in phase space with different phase-space or kinetic- a(nT) 7T 3
energy densities. Note that contributions from phase-spaogith the nT current

contraction appear only i, SPartce),

j"M=Tj—nD 4,T. (54)
V. THE MACROSCOPIC LIMIT C. Irreversible entropy production
A. Definition of the limit For the contribution(453 of the particle current to the

The macroscopic limit implies tha<L, N>1, andr is irreversi_ble entropy productipn we obtaicf. the analogous
much smaller than typical macroscopic time scdfes in-  calculation in[17,18 for detail
stance ?/D). Formally it is defined as A, Sparticle) ;2

1~m €

a,7—0 (46) kgar nD’ (553
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where i | nf(CT) D (CT)f'(CT) (589

—=—jln —j+n —

1te  1-e ke T = UteT)

jEEj—T nU:T nv—Ddyn (55b)
and
agrees with the particle curre®1) up to the dissipation- @ (thermostat) f/(CT) 1—€ v 1+ €
dependent term (% €)/2. = K =—nCT—f ch 9 5 ngr—2 Ndyv.

The other contribution45b) to the irreversible entropy B (€M (58b)

production comprises the explicit dependence on the kinetic-
energy field. It can be evaluated in a straightforward mannefhjs shows that the splitting of the total entropy flux into a
by Taylor expanding the functiof and the logarithms to divergence of an entropy current and a flkhemostadjs
quadratic order aroundwp, . The terms linear in  general not unique for arbitrary values @fnot even in the
f'(wpo)/f(wr, o) exactly cancel[Heref’(z) denotes the de- macroscopic limit.

rivative of f(z) with respect taz]. In nonvanishing order the

macroscopic limit is therefore VI. CONSISTENCY WITH THERMODYNAMICS
A;Sthead , [f"(CT) [f'(CT) 2 Having found the general expressions for the macroscopic
kgar =nD(4,CT) fcn |Fen | | limit of the particle and entropy fluxes, and of the irrevers-

(550) ible entropy production, we are now in a position to make
specific choices for the parameterfor the yet undetermined

Note that the square bracket can also be written as the secofighctionsg(x) andf(w), and for the functiona$ (E, T,d,T).

derivative of Inf. Comparing Eq(51) with the thermodynamic particle cur-
rent (17), we find that the driftv (E,T,d,T) must take the
D. Entropy flux form
By expandingf(w+4) to linear order aroundv,,, one B D
finds for the macroscopic limit of the entropy curré@ga U= Uel™ k?‘?XT' (59
j® o nf(CT) f'(CT) Since earlier we have not found any necessity tovfixhis
PR In o +Ddn+nDax(CT) f(CT) choice is obviously consistent with thermodynamics. It re-
(568 mains to be seen, however if the other constraints can be
fulfilled.
wheren* =bp* is a reference particle density, which is con- ~ The form of f can be fixed by observing that the term
stant in space and time. (0,T/T)? appears in the irreversible entropy producti@a)
The macroscopic limit of the entropy flux into the ther- With the samecoefficient as the- 4, T/T term in the entropy
mostat[Eq. (38b)] is found to be current(3b). Comparing thef-dependent parts in Eq&50)
and (563 [or Egs.(57a or (589] we find that this can only
¢ (thermostat) f/(CT) v [ (1—¢€)? happen if
k—z—nCTWq— D THU+GD(?XH
B (CT) 2(nf(2))"= — (Inf(2))’". (60)
*x(Nv). (56b) The solution of this differential equation is a power law,
It contains the spatial derivativé,(nv), which underpins f(z)=2"7 (61)

our earlier statement that the splitting of the entropy flux into

the divergence of a current and a flux going directly into ayjth y as a free constant parameter. A constant prefactor can
thermostat is not unique. It is natural to remove the derivahe apsorbed into the definitiai35) of o*.

tive from @ ("e™Most2) which leads to the entropy current Concerning the value of, there are several constraints,
. which all lead to the same unique choi¢e.The requirement
I 14] nf(CT) nDACT f'(CT) to have the same coefficient in front of thgn and the
ks -l n n* nDd(CT) f(CT) " —Dadyn terms in the entropy curreft9) fixes the value ok

(579  tobe—1[cf. | given by Eq.(583]. (ii) A natural splitting
of the entropy flux into the negative divergence of the en-

and to the flux tropy current and a flux into the thermostat holds &
—1, too. In particular, we then havg{®=j{ and
¢ thermostat f'(CT) v [(1-e? ¢ thermostatl, g (thermostay) jii ) The particle flux into the ther-
ke —nCT f(CT) a- 5( 4 nv+6D(9Xn)' mostat Eq.(57b) [or Eq.(58b)] has a well-defined meaning

(57b only when its second term contains the full particle curjent
For all these reasons the only dynamics that leads to physi-
However, there are otherdependent splittings, too. For in- cally acceptable results corresponds to the cheiee-1,
stance, by adding (t €)nv/2 to the entropy current one ob- which was connected to a time-reversible dissipation mecha-
tains nism in Sec. Il D. For this choice also the particle-current-
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dependent part of the entropy producti@ba contains the fact thatk turns out to be zero seems to be a special feature
full square ofj as required for consistency with the corre- of the baker model with three strips. In this version tempera-
sponding thermodynamic contributig@a). ture cannot move without an explicit particle motion, and
With these choices hence no thermal diffusion is expected.
Next, we consider the heat curreiif®® i.e., the energy

j© ey n(CT)~” AT current from which the potential energy of the external field
PR 1+InT —nDy —=. 62) s excluded,
i (heat)— 1 (s) i
In view of Eq. (3b), we identify the thermal conductivity : Tl ©9
and the Peltier coefficieri as Inserting the explicit form of currenjsandj® [cf. Egs.(51)
kD, 633 and(62)] into Eq. (9a), this yields
jhead=— )\, T+kgT 7j. (69
IT kg

. This form is indeed consistent with thermodynamics, and
also with the macroscopic limit of theT current(54). Mul-
(63b) tiplying the latter bykgy, we recover Eq(69).

Through this, the transport coefficients could be expresse It IS wqrth pointing out that due to the definitig6g of .

by system parameters. It is remarkable that finite values Wer%'e d|ffu3|9n coeff|C|er_1t and the particular form of the chemi-

found for A andII although only the finiteness eof and D cal potential(67), we find that

was assumed in the course of the macroscopic limit. ookgT=62Dn. (70)
Similarly, for the flux into the thermostat one obtains

T e

n
—1—In<—*(CT)7
n

p (thermosta Consequently, Einstein’s relation holds in the multibaker

— ng— vl 64) map. One can thus express the electric conductivity by the
kg BRI diffusion coefficientD in all formulas. In particular, we find
It contains a termvj/D corresponding to the change of en- (im—y, V_T)2+ ks_12 71)
tropy associated with Joule’s heating due to the driif the TN T nD '’
particles. In thermodynamic ("e™MostY) yanishes in the
bulk, so that the source termtakes the form a formula which in the case of constant temperature has al-
ready been derived in earlier versions of the multibaker map
q*  vj [17,18.
k_B: N (65) As further consequences of Einstein’s relation, we men-

tion the following.(i) The electric driftv | (4) is proportional
It describes the increase of the local kinetic energy due tdo E/T,
dissipative heating. The heat thus deposited in the system

will be transported to the boundaries by a heat current. v :9 E (72)
The entropy density obtained as the macroscopic limit of o kg T
Eq. (39) is
a- (39 since the diffusion coefficient is assumed to be constant.
n (ii) Comparing the heat and electric conductivitié8a and
s=—kgn In(—*(CT)V) . (66)  (70), we find
n
A kg2
This implies that, up to an additive constaef]/T is the et e (73

entropy per particle/n.
Since the multibaker map describes a system of weaklyvhich implies that this ratio is independent of thermody-
interacting particle§38], it is natural to assume that not only namic state variables. Thus, the Wiedemann-Franz[ %3y
its entropy function(66) but also its chemical potential cor- proves to hold for the multibaker modéiii ) the elementary
responds to that of a classical ideal gas. We take Drude theory[40] of metallic conduction predicts the See-
beck coefficienta=1II/T to be proportional tkg/e, i.e., to
be independent of temperature or density, which contradicts
observation. Such a term is indeed present in(E8b), but
its second term also predicts a specific state dependence.
From these two equations of stajefollows as the specific  Thus, the present model turns out to describe certain features
heat at constant volume, measured in ukis of transport more realistically than the classical Drude
By substituting the chemical potentiéd7) into the ther-  model, although it cannot be expected to give a microscopi-
modynamic expression of the Peltier coefficig@0) and cally realistic theory of thermoelectric phenomefvehich
comparing it with the particular form obtained fof/T in  contain essential quantum effects due to the strong degen-
Eqg. (63b), one immediately sees that the coefficigrdf Eq.  eracy of the fermionic electron gajgti].
(59 has to vanish. Hencg,=ea from Eq. (18), and from Finally, we consider the temperature equation following
Eg. (16b one recovers the Onsager relatibh=Ta. The  from Eq.(53). It takes the form

S
pe=ksT(1+7) =T . (67)
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(NOT)  ,T contribution to the entropy flux in the local entropy-balance
W_JT’ (74 equation in a generalization of nonequilibrium thermody-
namics[cf. Egs.(5) and(1)]. This generalization of the local
which can be shown to be consistent with the general rela?@lance equation, however, does not imply at all a similarity
tion [cf. Eq. XII1.(85) of [33]] expressing the entropy’s local of global transport properties, which in general depend on

time derivative as the spatial depe_ndepce of the ﬁelds. It. is clear _from (Z4)
that a state which is steady with a givex) will not be
Ay (NOT) ellj ej? steady with the thermodynamic choicg (x). It will not
aS= T TN T ) ool (79 even have similar density profiles. Therefore, thermodynam-
e

ics and thermostated descriptions might lead to very different

Here, the respective terms are contributions due to heat cofR€SUlts on the global level.
duction, the Peltier and Joule heating. Using &®) and the

form of PeItigr cogffipient Eq(63p), one finds that Eq(.75) _ VIIl. DISCUSSION
becomes an identity if and only if the thermodynamic choice
Eq. (65) is taken for the source term. We have extended multibaker models by augmenting the
density fieldp of these models with a temperaturelike field
VII. THERMOSTATING variablew. This allowed us to address problems like thermo-

electric cross effects requiring two independent thermody-
After having identified the condition for full consistency namic driving fields. The model has the following features.

with thermodynamics in the form ofp(themestat=g or g (a) The evolution equation ofv requires source terms
=Q*, we turn to a short discussion of cases where there careflecting the local irreversible heating of the system in the
be an entropy flux into the thermostat. In the thermostatingpresence of transport.
algorithm of nonequilibrium molecular dynamifé|, heat is (b) The temperature enters the entropy through a kinetic-
taken out of the system in order to keep the temperaturenergy-dependent normalization of tlighase-spageden-
constant in a spatially homogeneous steady state, and &ity.
avoid overheating due to the permanent acceleration pro- (c) Consistency with the thermodynamic description of
duced by en electric field. In our setting this corresponds to @&ansport is achieved for densities that are coarse grained in
case withg, T=0. Such a uniform temperature field is sta- regions of small spatial extension.
tionary forq=0 only, as follows from the temperature equa- (d) Comparing the coarse-grained description with the mi-
tion (74), such thatd(hemostate i 4, i/D. It is indeed a  croscopic one allows us to identify all contributions to the
kind of Joule’s heat, which is let into the thermostat. Note,local entropy balance.
however, that classical thermodynamics does not admit a sta- (e) The time evolution of the system can be interpreted as
tionary homogeneous statgT=0 to be steady, since the that of weakly interacting particles, whose motion may only
temperature increases in the bulk due to Joule’s heating. Thise coupled through a mean-field-like dependence of the evo-
indicates that thermostating is a tool by which one can turn dution equations on the coarse-grained field variables. In ac-
preselected temperature profile into a steady state. After algordance with this, the resulting “multibaker” gas obeys the
for every density profile consistent with given boundary con-classical ideal-gas equation of state. The Onsager relation,
ditions and a preselected fixed temperature prdfile) there  the Wiedemann-Franz law, and the Einstein relation can be
is a source term distributiog(x), such that the temperature derived, and expressions are found for the Peltier and See-
does not change in timgef. Eq. (74) with 4,T=0]. In all beck coefficients.
these cases(hemostal . (ynq—vj/D) is different from (f) The local entropy balance of nonequilibrium thermo-
zero. This shows that the algorithm for thermostating can belynamics can be generalized by introducing at every location
maintained even for complicated temperature profiles. Sincan instantaneous flow of entrogye., of heal into a thermo-
the sourceq appears neither in the currents, nor in the irre-stat. When time reversibility is maintained, the dynamics be-
versible entropy production, nor in the constraint for the On-comes closely reminiscent of numerical algorithms related to
sager relation to hold, nor in the transport coefficients, thesaussian thermostats.

local entropy balance is consistent with every choicg of (g) Dissipation and thermostating play different roles in
@ thermostanrayided the entropy flux appears in the form of dynamical-system models for transport. The conditica
Eq. (5). In general, the divergence of the entropy curiéfit  —1, for time reversibility, was found independently of the

contributes to the entropy flu®, and the remaining part of choice of®(hemosta) \wijth this dissipation we can describe
the reversible change of the entropy is transferred to the theboth thermostated and nonthermostated systems.
mostat. It is remarkable that agreement with thermodynamics
We conclude that, although thermostating is a deviatiorcould be achieved by this comparatively simple model. In-
from classical thermodynamics, it seems to be weakest deed, strong restrictions on the choice of its parameters were
possible deviation in the sense that except for the form of th@eeded. The free functioridrift v, source strength of hegt
entropy flux it leaves allocal thermodynamic relations in- and normalization of densiti€f had to be chosen appropri-
variant. It can thus be seen as an idealization of a physicaltely, and a free dissipation-related parametgriad to be
thermostat(which can in reality only be attached to the fixed to a given value leading to a time-reversible dissipative
boundaries of a systemwhere heat need not be transporteddynamics(even a Hamiltonian, volume-preserving dynamics
spatially(to the boundariesbut can be released directly into is excluded. With the given choices, however, we do not
the surroundings. This gives rise to a nonthermodynamidind any restriction to weak gradients. This might be caused
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by the strong chaoticity and the Markovian property of theentropy balance, which therefore deviates from its thermody-
dynamics, which is based on the baker map’s piecewisenamic form[Egs. (1) and (2)]. Hence, modeling only the
linear character and the fact that this family of maps admitdransport processes via dynamical systems is a much easier
no pruning. enterprise than aiming also for a proper description of entro-
We have used a generalized concept of dynamical sypies. From the point of view of a correct entropy balance, the
tems to model open boundaries where transport can be irexistence of a phase-space variable orthogonal to the trans-
duced by appropriately chosen boundary conditions. Theort direction is essential. Only in this case can the fractal
time evolution of a macroscopically large number of inde-structures in the microscopic densities be followed, whose
pendent “particles” is considered. Consequently, not even irunresolvability leads to entropy production. It is an open
steady states is the natural measure of the multibaker maguestion at present, however, if a dissipative dynamics is
relevant to calculate physical observables. After all, thisneeded for this, since a variation of the cell size in the sense
measure is defined only if the map is closed by periodicof [31] might convert contributions to the entropy production
boundary conditions. Rather, another measure, the ondue to local phase-space contraction into those of mixing.
forcedon the system by the open boundary conditions, plays The suggested method for modeling thermoelectric cross
the central role. Such measures were first investigated bgffects can be considered as a combination of a dynamical-
Gaspard and co-workef8,21,23. system and a hydrodynamic description. In addition to the
Finally, we draw attention to the fact that the presentappearance of a source term of the kinetic energy, the strong
model differs in important features from other models ofmixing character of the chaotic dynamics is essential, which
transport by low-dimensional dynamical systems. The tranteads to fractal phase-space patterns in the forced measure
sition probabilitieswhich are closely related to the drift and considered. By that it ensures that irreversibility, and thus
diffusion coefficients may depend on the coarse-grainedconsistency with thermodynamics, can be reached in a de-
fields. This dependence leads to a dynamical system withcription based on a low-dimensional dynamical system.
many degrees of freedom. Consequently, the full time evo-
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dimension is impossible. By neglecting tpevariable(i.e.,
when projecting the baker map to obtain a one-dimensional
map describing the transport of particles along xhdirec-
tion) one finds full consistency with macroscopic transport Every point &,p) with xe[a,a(N+1)], 1=m=N, and
equations, but all drift-dependent terms disappear from thg e[0,b] is mapped by the multibaker mapas follows:

APPENDIX A: RIGOROUS DEFINITION OF THE MAP
AND OF THE TIME EVOLUTION OF DENSITIES

([ X—am — X—am
( +a(m—1), Imlp) for 0 < <In
I'm a
x—a(m+ly) ~ o~ —am
B(x,p)={ — — tam, bly+Smp for |, < <Im+sm (A1)
m
x—a(m+I,+sg) — — — X—am
r +a(m+1), b(lp+Spiitrmep| for Ip+s, < <1
\ m
|
The dynamics of the phase-space dengify,p;t) can be The boundary conditions are thaf(z;t) is fixed to g

interpreted as the time evolution of a typical set of pointsand gy, in the cellsm=0 and m=N-+1, respectively.
distributed in phase space. It is governed by the FrobeniusFhey are taken into account by the choice
Perron equation

%0 for B~ %(z) incell0

Q(Z:t+r)=fd2’5(z—B(Z’))Q(Z’;t), (A2) o(zit+7)= one1 for B-Yz) incellN+1,

(A3)

wherez denotes pointsx,p) in the phase space of the multi-
baker chain. for pointsz whose preimage8 ~(z) lie in cell 0 (N+1).



PRE 62

Due to the chaoticity of the map and the difference in the

boundary conditions, the densip(z;t) becomes more and
more irregular as time goes ¢at least for any smooth initial
distribution. Therefore, asymptotically the concept of den-
sity is not well defined. Fot—« one assigns the measure
wn(A)=lim,_ .. [rdzp(z;t) to any phase-space regidn
Similarly to the phase-space densit{z;t), the time evo-
lution of the kinetic-energy density
Ww=PpW (A4)

is described by the integral equation
w(zZ;t+7)=[1+719(2)] f dz' 6(z—B(zZ'))w(Z';t).
(A5)

In generalization of the Frobenius-Perron equati@®),
however, a source term(x) is included now, which is
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FIG. 3. Notation used to define the level-2 partitioning of a cell
after two applications of the map. Every strip is labeled by a two-
letter sequence,q, wherep,qe{L,S R} label the level-2 strips.

(p stands for the level-2 strips within level-1 strips selected by the
label g.) To illustrate the use of these labels, the heights of a few
strips are indicated at the left side of the cell.

piecewise constant in the cells. The corresponding boundaij?® Physically relevant casi(z)=z"" [cf. Eq. (61)], sup-

conditions forw(z;t) are

o(Z;t+ 7)=Qon+1)Won+1) [ 1+ 70(2) ] (AB)
for points whose preimages are in cell 0 i1, respec-
tively.

In this case, alsw/(z;t) is no longer well defined asymp-
totically. Instead, the stationary kinetic-energy distribution
should be considered as an invariant measyrelifferent
from w, which assigns the  weight v(A)
=lim,_ ../ adZw(z;t) to every regionA in phase space.

APPENDIX B: STRUCTURAL STABILITY
OF MACROSCOPIC RESULTS

In this appendix we generalize the results of Vollmer
et al.[17] and of Gilbert and Dorfmah20] who considered
thermostated multibakers describing conduction withou

cross effects. We demonstrate that, after taking the macré:
scopic limit, our results are independent of the detailed pre-

scription of coarse graining. One part of such a demonstr

tion should be that the same results are obtained when coar

graining is applied to any numben; of successive cells
after every time step. In this case all previous results fo
guantities of unit volume remain unchanged in the macro
scopic limit for any fixedm;, since both the length of the
investigated region and the differences of the values of th
coarse-grained fields become multiplied by a facigr, and
thus the macroscopic gradients do not change.

We therefore concentrate on the more involved case of

coarse graining on the cells only after evargtime steps.

From a density that is constant in each cell, the dynamics

generates structure on tiéh level of the refining partition
obtained by thenth images of the cells. Structural stability is
demonstrated by showing that the total entropy productio

a

press the normalization constamt of the density and Bolt-
zmann'’s constarkg, and only work out the case=2. Al-
though this corresponds to just the simplest possibility, it
indicates the strategy to be followed when discussing further
refinementg42].

1. Preliminaries

We first extend our notation in order to describe densities,
entropies, and fluxes defined on the different levels of coarse
graining. To this end we consider the level-2 partition{ofy
Fig. 3 of the cells two time steps after the initial coarse
graining. Again primes denote quantities evaluated after the
first application of the mapping. Similarly, double primes are
used for the values after two iterations. Note that the transi-
tion probabilitiesr,, sn,, andl,, and the widths and heights
of the corresponding columns and strips also receive primes
fow, due to their possible dependencegpnandw,, (which
volve in time.

In every cellm there are 3 strips labeled by a pair of
ymbols 0,q) with p,qe{L,S,R}; p indicates the strip
gle,S, R) of Fig. 2(b) in which the point is located after one
time step(irrespective of the cell indgxandq specifies its
Ipos:ition in the strip I[,S,R) after the second time step. The
strips (p,q) have heighbs, ;=bs, o/ Eajp and carry den-

sities g(p,q) andw; (p,q). Here,

S

e ~~
rn, forg=R
Sma=1 Sm forg=s (B1)
i, forg=L

is a shorthand notation for the height after one time step, and
the subscript

can be decomposed into a sum of contributions from coarse

graining on the different levelstarting with the finest struc-

tureg and that all these contributions are the same in the

n m+1 forg=L
mg=4y M forq=S (B2)
m—-1 forq=R

macroscopic limit. This is equivalent to showing that coarse
graining may also be applied to a finer partitioning within theis used as a book-keeping device to indicate the cell from

cells, without affecting the resulting thermodynamic rela-

which come the points in a given strip. An analogous defi-

tions. For the sake of conciseness we immediately exploraition holds for the quantities,, ; without tildes.
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We call o(p,q), en(a), and og, [@m(P.q)Wi(P.q), W (p,a) =W, (P)(1+7q,) =Wy (1+7qm )(1+7qL).

n " "on q q.p q
om(Q)w(q), and o wy] the level-2, level-1, and level-0 (B4b)
densities[kinetic-energy densitigsafter two time steps, re-
spectively. By construction, the level-O0 densities coincideHere m, , denotes the action of EqB2) applied tom,:
with the cell densities considered in preceding sections. Then, ;=(mp),. In order to follow the time evolution of the
densities defined on different levels are related to each othemtropies, we consider coarse-grained entropies defined with
since coarse graining preserves their average value in eacbspect to densities of different resolution. The leven-

cell: tropy S\ is defined with respect to the levieldensities.
Thus,SET?)Esz—ab omin(onwy,?), while the level-1 and
0= e o= Sma’ > ga)%(p,q), level-2 entropies at time and 2r take the forms
q q P
(B33 S =—ab 3 Srpen(pInlenpW, 7 (p)]
(B5a)

OrWH="> Smq’ Cm(AW(Q)
a and

= Smg’ > Smop Om(P.AWL(P,T). —_
- m,q > my.p €m m Sg)n:—abpz:le sm'qr quypgg(p,q)
(B3b) '

1 " -
Based on the time evolution of the fields, relations be- xInLem(p.a)wr *(p,a)], (B5D)

tween densities at different instants of time can be CalCUIateqespectively.
Taking into account the respective actidi2d) and (25) of

the mapping on the densitigs andw, we obtain 2. Entropy balance on level-1 strips

!

Sm St g Sm In order to obtain the entropy balance on level-1 strips,
” q a ’ q a q.p P 2 1 .
Om(P.A) == Cm (P) == =—Om, we relateS?)" to SV’ . Making use of Eqs(B1), (B2), (B4),
Sm.q Sma Smqp and (B5b), the level-2 entropy after two time steﬁﬁ)” of

(B4a) cell m can be worked out as

SR'=—ab 2, Sng' Snyp r(POINER(P. AW = (P 0)]

!

——ab Sh (@ In —or—ab> S cSm  p@m. INQh (PWi (p) (14705 7] (B6)
g Ma 9= Mg Sma o M d7Map P=Mgpt = Mg Mg m
WhefeQr'anEp% @m,(P)-
By using Eq.(B5a), S{?)” takes the form
(2)n ’ ’ S;nq 4 ’ (1)/ ’ ’ ’
Sr=_ab > Sing .q€m N ——+ 2 Sh S +aby s e In(1+ gy, (B7)
q Sm’q q q q q q q

which, after carrying out the summation owgrleads to the level-1 generalization of the the entropy flux,
A8 =85

P 3 [
=—ab rr,nfl% sml,per’nl(p)ln< er’nl(p)w;ﬂl(p)':vl)

m

—_ B |
—ably, % Sm+1p€ m+ 1(p)|n( Om+ 1(D)W;;1+{(P)TTH)
m

+ab (it 2 Smpen(PIN[en(PWh (P +aby2 sp qep In(1+ 7). (88)
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The entropy balance for the level-1 strips then reads AR50 = A (2)g0) _ A(Dg0) = 5(0)" _ &(2)" (B14)
1 m m e m m m
(1) — (1) _ g(1)' = (1)’ (1)’ S o . .
ASyT =Sy’ —Si’ =AiSy” +ASy (B9) Again it is identified as the loss of information caused by

coarse graining.

with the level-1 irreversible entropy production Note that this rate of entropy production can be expressed

ASy =S - s@) ®10 %°
Again it is related to the loss of information on the micro- APSD=A S +A; S (B15)
scopic state of the system when applying a coarse-grained _ N .
description. whereA;SU)=sl)" —si+1)" (j=0,1). When coarse graining

If the densitiesg,’nq are uniform in the respective cells is applied after each time step, the entropy production is

my, i.e., they do not depend on the partitioning lapethe A, SO+A,;S". Thus, 54, also amounts to the differ-
above relations coincide with Eq&7) and (45) [in which  ence between the irreversible entropy production of the
0., is eliminated via Eq(22)]. Typically, however, there is a cases, where coarse graining is applied after each and after
nonvanishing difference every second time step.

(1) — (1) _ (0) /
OAiSy =AiSy —ASy, (B11) 4. Evaluation of 5A;SY

which disappears only in the macroscopic limit, as shown We recall thate; (q) andw;,(q) denote the fields after
below after the discussion of the entropy balance for coarsevo time steps, when coarse graining is applied on the

graining after every second time step. level-1 partition. The level-1 entropy after two time steps is
3. Entropy balance for cgarse graining after every second Sﬁ) _ —abE Smd T (@)In[ e/ (aw(q) 7]
time step
In order to denote temporal changes taken with a time lag ,
27, we assign the superscrif? to A. A direct consequence qu'q
' o o ((2)5(0) o =—abX si o in =+ sy g
of Eq. (B8) is that the entropy flud ™S, after two time T Sng  a
steps is

x{—abemp In[emn Wy, ~7(1+70m) 7]}
APSO=— 504 g2~ g0+ g1 1) 1 g2)"

(B16)
= (0) (1)’
=AeSn'+AeSy” - (B12) Using the form(40) of the coarse-grained entropy, we obtain
This flux is the two-time-step generalization of the entropy
flux AgSy,. sh
In order to establish the entropy balance, the change of S(l) =—ab2 Sm qu In N_qq+2 Sr'n qS(O”
the coarse-grained entrom((z)sﬁ?) is consideredwithout Smq 4
coarse graining after the first step
) ) ) ) +ab yE Sty @ IN(L+ 7). (B17)
A@SO=g0)"_g0)_ g0 _g2)"  g2)"_ g(0)
U d WhereS(O) is the coarse-grained entropy of cell, evalu-
=50 @ AP (B13) 9 Py b

ated after one time step. This form of level-1 entropy can
Thus, the two-step irreversible entropy chand@S!” takes  straightforwardly be compared with the level-2 entrgpy),
the form leading to

A Sn}) _S(l)" 5(2) _E s 5(0) _Sn}) )

=SmAi S+ T 1A S 1+l 1A S

=AS9—r (A SO—A S )~ 1 (ASO—ASO )+ (] =) ASO (1 — 1) ASE) (B19)
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where we have used thgt=1-r,,—|,. Expressing, and
I, in terms of driving forces and transport paramet&®)
and keeping only leading order termsanone obtains

6A;S=7D32(A;S) — 709 (A;SO) — 7(d,0)A; SO
+0O(7%,a). (B19)

After division by ar, the right-hand side of EqB19) con-
tains the rate of irreversible entropy productianS®/ar
and its spatial derivatives, becaudeS®/ar has a finite
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A0 -0 50— 50" _ g0 SO _ 5O

=AS9 +ASO), (B20)
the entropy flux, i.e., the difference between the changes of
the coarse-grained entropy and the irreversible entropy pro-
duction, also takes the same macroscopic limit, regardless of
the procedure for coarse graining.

Note that the calculations given in this Appendix can be
generalized in a straightforward manner to account for aver-

macroscopic limit. Consequently, the difference in the en-aging only after every time steps on any finite levet of
tropy production5A;S/(a7) vanishes in the macroscopic the partitioning of the cellf42]. All these approaches differ
limit, when 7—0. only by terms that can be expressed as a product afd
Since the temporal change of the level-0 coarse-grainedpatial derivatives of the macroscopic rate of irreversible en-
entropy is(by definition unaltered by changes of the pre- tropy production. For largen and x, more and higher de-

scription for coarse graining,

rivatives appear.
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